分析 求出函數(shù)的導(dǎo)數(shù),問題轉(zhuǎn)化為a<x2+x在(1,2)恒成立,令g(x)=x2+x,x∈(1,2),根據(jù)函數(shù)的單調(diào)性求出a的范圍即可.
解答 解:f′(x)=1-$\frac{a}{{x}^{2}}$+$\frac{1}{x}$=$\frac{{x}^{2}+x-a}{{x}^{2}}$,
若f(x)在(1,2)遞增,
則x2+x-a>0在(1,2)成立,
即a<x2+x在(1,2)恒成立,
令g(x)=x2+x,x∈(1,2),
則g′(x)=2x+1>0,
則g(x)在(1,2)遞增,
故g(x)min=g(1)=2,
故a<2,
故答案為:(-∞,2).
點(diǎn)評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問題,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | $-\frac{1}{3}$ | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 順序結(jié)構(gòu) | B. | 條件結(jié)構(gòu) | ||
C. | 模塊結(jié)構(gòu) | D. | 順序結(jié)構(gòu)和條件結(jié)構(gòu) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com