8.設(shè)向量$\overrightarrow a=(1,2),\overrightarrow b=(m,m+1),\overrightarrow a∥\overrightarrow b$,則實數(shù)m的值為( 。
A.-3B.$-\frac{1}{3}$C.-1D.1

分析 利用向量共線定理即可得出.

解答 解:∵$\overrightarrow{a}∥\overrightarrow$,∴2m-(m+1)=0,解得m=1.
故選:D.

點評 本題考查了向量共線定理,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.函數(shù)$f(x)=lnx+\frac{1}{2}{x^2}-({b-1})x$
(Ⅰ)若b=2,求函數(shù)f(x)在點$P({1,-\frac{1}{2}})$處的切線方程;
(Ⅱ)若函數(shù)f(x)存在單調(diào)遞減區(qū)間,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)函數(shù)f(x)(x∈N)表示x除以2的余數(shù),函數(shù)g(x)(x∈N)表示x除以3的余數(shù),則對任意的x∈N,給出以下式子:①f(x)≠g(x);②f(2x)=0;③g(2x)=2g(x);④f(x)+f(x+3)=1.其中正確的式子編號是②④.(寫出所有符合要求的式子編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知a=$[{\frac{1}{2},2}]$,b=0.56,c=log0.56,則a,b,c的大小關(guān)系為( 。
A.c<b<aB.c<a<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2$\sqrt{2}$,且經(jīng)過點(-2,0).過點D(0,-2)的斜率為k的直線l與橢圓交于A,B兩點,與x軸交于P點,點A關(guān)于x軸的對稱點C,直線BC交x軸于點Q.
(Ⅰ)求k的取值范圍;
(Ⅱ)試問:|OP|?|OQ|是否為定值?若是,求出定值;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)$f(x)=x+\frac{a}{x}+lnx$在區(qū)間(1,2)上單調(diào)遞增,則實數(shù)a的取值范圍為(-∞,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=bsinx-ax2+2a-eb,g(x)=ex,其中a,b∈R,e=2.71828…為自然對數(shù)的底數(shù).
(1)當a=0時,討論函數(shù)F(x)=f(x)g(x)的單調(diào)性;
(2)求證:對任意a∈[$\frac{1}{2}$,1],存在b∈(-∞,1],使得f(x)在區(qū)間[0,+∞)上恒有f(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={1,3},集合B={3,4},則A∪B等于(  )
A.{1}B.{3}C.{1,3,3,4}D.{1,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.拋物線y2=4x,直線l過焦點且與拋物線交于A(x1,y1),B(x2,y2)兩點,x1+x2=3,則AB中點到y(tǒng)軸的距離為( 。
A.3B.$\frac{3}{2}$C.$\frac{5}{2}$D.4

查看答案和解析>>

同步練習(xí)冊答案