9.若角α、β的終邊關(guān)于直線x+y=0對(duì)稱,且α=-60°,則β={ β|β=330°+k•360°,k∈Z}.

分析 若β∈[0°,360°),則由角α=-60°,且角β的終邊與角α的終邊關(guān)于直線y=-x對(duì)稱,可得 β=330°,由此求得故當(dāng)β∈R時(shí),角β的取值集合.

解答 解:若β∈[0°,360°),則由角α=-60°,且角β的終邊與角α的終邊關(guān)于直線y=-x對(duì)稱,可得 β=330°,
故當(dāng)β∈R時(shí),角β的取值集合是{ β|β=330°+k•360°,k∈Z },
故答案為:{ β|β=330°+k•360°,k∈Z}.

點(diǎn)評(píng) 本題主要考查終邊相同的角的定義和表示方法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若f(x)=x2+bx+c對(duì)任意實(shí)數(shù)x都有f(a+x)=f(a-x),則( 。
A.f(a)<f(a-1)<f(a+2)B.f(a-1)<f(a)<f(a+2)C.f(a)<f(a+2)<f(a-1)D.f(a+2)<f(a)<f(a-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.6人排成一排,甲、乙、丙三人不能都站在一起的排列種數(shù)為( 。
A.${P}_{6}^{6}$B.${P}_{4}^{4}$•${P}_{3}^{3}$
C.${P}_{6}^{6}$-${P}_{4}^{4}$•${P}_{3}^{3}$D.${P}_{6}^{6}$-${P}_{3}^{3}•$${P}_{3}^{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.計(jì)算:
(1)7${\;}^{(1-lo{g}_{7}5)}$;
(2)4${\;}^{\frac{1}{2}}$${\;}^{(lo{g}_{2}}9-lo{g}_{2}5)$;
(3)3${\;}^{1+lo{g}_{3}6}$-2${\;}^{4+lo{g}_{2}3}$+103lg3+($\frac{1}{9}$)${\;}^{lo{g}_{3}4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.一個(gè)幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積是4+$\frac{5}{3}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.判斷下列函數(shù)的奇偶性:
(1)f(x)=$\sqrt{2}$sin(2x+$\frac{5}{2}π$);
(2)f(x)=1g(sinx+$\sqrt{1+si{n}^{2}x}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若1∩α=A,l與b相交或異面,則b與α的位置關(guān)系為相交、平行或異面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.函數(shù)f(x)=$\frac{ax+3}{x-1}$在(1,+∞)上單調(diào)遞增,則實(shí)數(shù)a的范圍是(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.當(dāng)實(shí)數(shù)k變化時(shí),對(duì)于方程(2|x|-1)2-(2|x|-1)-k=0的解的判斷不正確的是( 。
A.$k<-\frac{1}{4}$時(shí),無(wú)解B.$k=-\frac{1}{4}$時(shí),有2個(gè)解
C.$-\frac{1}{4}<k≤0$時(shí),有4個(gè)解D.k>0時(shí),有2個(gè)解

查看答案和解析>>

同步練習(xí)冊(cè)答案