【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)棱AA1⊥平面ABC,△ABC為等腰直角三角形,∠BAC=90°,且AB=AA1=1,E,F(xiàn)分別是CC1 , BC的中點(diǎn).
(Ⅰ)求證:B1F⊥平面AEF;
(Ⅱ)求三棱錐E﹣AB1F的體積.

【答案】證明:(Ⅰ)由條件知AF⊥平面CCBB1 , ∴AF⊥B1F, 由∠BAC=90°,且AB=AA1=1,得 ,EF= ,
,即B1F⊥EF,又∵EF∩AF=F,
∴B1F⊥平面AEF;
(Ⅱ)解:由已知可得,AF= ,且由(Ⅰ)知AF⊥FE,
,


【解析】(Ⅰ)證明AF⊥B1F,B1F⊥EF,然后證明B1F⊥平面AEF;(Ⅱ)由(Ⅰ)知,B1F⊥平面AEF,然后利用等積法求得三棱錐E﹣AB1F的體積.
【考點(diǎn)精析】關(guān)于本題考查的直線與平面垂直的判定,需要了解一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(ex , lnx+k), =(1,f(x)), (k為常數(shù),e是自然對數(shù)的底數(shù)),曲線y=f(x)在點(diǎn)(1,f(1))處的切線與y軸垂直,F(xiàn)(x)=xexf′(x).
(1)求k的值及F(x)的單調(diào)區(qū)間;
(2)已知函數(shù)g(x)=﹣x2+2ax(a為正實(shí)數(shù)),若對任意x2∈[0,1],總存在x1∈(0,+∞),使得g(x2)<F(x1),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正三棱臺上底邊為3,下底邊為6,高為1,求斜高與側(cè)棱長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且 asinA=( b﹣c)sinB+( c﹣b)sinC.
(1)求角A的大;
(2)若a= ,cosB= ,D為AC的中點(diǎn),求BD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2cos2(x﹣ )﹣ sin2x+1
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)x∈( )時(shí),若f(x)≥log2t恒成立,求 t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 在△中, 點(diǎn)邊上, .

(Ⅰ)求

(Ⅱ)若△的面積是, 求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年某市街頭開始興起“mobike”、“ofo”等共享單車,這樣的共享單車為很多市民解決了最后一公里的出行難題.然而,這種模式也遇到了一些讓人尷尬的問題,比如亂停亂放,或?qū)⒐蚕韱诬囌紴椤八接小钡龋疄榇,某機(jī)構(gòu)就是否支持發(fā)展共享單車隨機(jī)調(diào)查了50人,他們年齡的分布及支持發(fā)展共享單車的人數(shù)統(tǒng)計(jì)如下表:

年齡

受訪人數(shù)

5

6

15

9

10

5

支持發(fā)展共享單車人數(shù)

4

5

12

9

7

3

(Ⅰ)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.1的前提下,認(rèn)為年齡與是否支持發(fā)展共享單車有關(guān)系:

年齡低于35歲

年齡不低于35歲

合計(jì)

支持

不支持

合計(jì)

(Ⅱ)若對年齡在的被調(diào)查人中隨機(jī)選取兩人,對年齡在的被調(diào)查人中隨機(jī)選取一人進(jìn)行調(diào)查,求選中的3人中支持發(fā)展共享單車的人數(shù)為2人的概率.

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式: ,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】天然氣是較為安全的燃?xì)庵,它不含一氧化碳,也比空氣輕,一旦泄露,立即會向上擴(kuò)散,不易積累形成爆炸性氣體,安全性較高,其優(yōu)點(diǎn)有:①綠色環(huán)保;②經(jīng)濟(jì)實(shí)惠;③安全可靠;④改善生活. 某市政府為了節(jié)約居民天然氣,計(jì)劃在本市試行居民天然氣定額管理,即確定一個居民年用氣量的標(biāo)準(zhǔn),為了確定一個較為合理的標(biāo)準(zhǔn),必須先了解全市居民日常用氣量的分布情況,現(xiàn)采用抽樣調(diào)查的方式,獲得了位居民某年的用氣量(單位:立方米),樣本統(tǒng)計(jì)結(jié)果如下圖表.

(1)分布求出的值;

(2)若從樣本中年均用氣量在(單位:立方米)的5位居民中任選2人作進(jìn)一步的調(diào)查研究,求年均用氣量最多的居民被選中的概率(5位居民的年均用氣量均不相等).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某村積極開展“美麗鄉(xiāng)村生態(tài)家園”建設(shè),現(xiàn)擬在邊長為1千米的正方形地塊ABCD上劃出一片三角形地塊CMN建設(shè)美麗鄉(xiāng)村生態(tài)公園,給村民休閑健身提供去處.點(diǎn)M,N分別在邊AB,AD上. (Ⅰ)當(dāng)點(diǎn)M,N分別是邊AB,AD的中點(diǎn)時(shí),求∠MCN的余弦值;
(Ⅱ)由于村建規(guī)劃及保護(hù)生態(tài)環(huán)境的需要,要求△AMN的周長為2千米,請?zhí)骄俊螹CN是否為定值,若是,求出此定值,若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案