精英家教網 > 高中數學 > 題目詳情
已知集合A{x|0<log3x<1},B={x|x≤2},則A∩B=(  )
A、(0,1)
B、(0,2]
C、(1,2)
D、(1,2]
考點:交集及其運算
專題:集合
分析:求出A中不等式的解集確定出A,找出A與B的交集即可.
解答: 解:由A中的不等式變形得:log31<log3x<log33,得到1<x<3,
∴A=(1,3),
∵B=(-∞,2],
∴A∩B=(1,2].
故選:D.
點評:此題考查了交集及其運算,熟練掌握交集的定義是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知命題p:?x0∈R,x02+x0+1<0;q:?x∈[1,2],x2-1≥0.以下命題為真命題的是(  )
A、¬p∧(¬q)
B、¬p∧q
C、p∧(¬q)
D、p∧q

查看答案和解析>>

科目:高中數學 來源: 題型:

設x,y滿足約束條件
x≥2
3x-y≥1
y≥x+1
,若目標函數z=ax+by(a>0,b>0)的最小值為2,則4a+8b的最小值為( 。
A、2
B、2
2
C、4
D、4
2

查看答案和解析>>

科目:高中數學 來源: 題型:

設x,y,z表示直線(彼此不同)或平面(不重合),則“
x⊥z
y⊥z
⇒x∥y”成立的一個充分條件是(  )
A、x、y、z都是平面
B、x、y、z都是直線
C、x是直線,y、z是平面
D、x、y是平面,z是直線

查看答案和解析>>

科目:高中數學 來源: 題型:

設變量x,y滿足約束條件
x+y≥1
x-y≥0
2x-y-2≤0
,則目標函數z=x-2y的最大值為( 。
A、
3
2
B、1
C、-
1
2
D、-2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)是(-∞,+∞)上的奇函數,若對于x>0,都有f(x+2)=f(x),且當x∈(0,2]時,f(x)=2x+1,則f(-2013)+f(2014)的值為( 。
A、-4B、-2C、2D、4

查看答案和解析>>

科目:高中數學 來源: 題型:

已知拋物線C:x2=4y的焦點為F,直線x-2y+4=0與C交于A、B兩點,則sin∠AFB=(  )
A、
4
5
B、
3
5
C、
3
4
D、
5
5

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a2+b2=1,c2+d2=1.
(Ⅰ)求證:ab+cd≤1.
(Ⅱ)求a+
3
b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知關于x的不等式
x+2
m
>1+
x-5
m2

(1)解這個不等式;
(2)當此不等式的解集為{x|x>5}時,求實數m的值.

查看答案和解析>>

同步練習冊答案