【題目】已知拋物線和圓,傾斜角為45°的直線過拋物線的焦點(diǎn),且與圓相切.

1)求的值;

2)動(dòng)點(diǎn)在拋物線的準(zhǔn)線上,動(dòng)點(diǎn)上,若點(diǎn)處的切線軸于點(diǎn),設(shè).求證點(diǎn)在定直線上,并求該定直線的方程.

【答案】1;(2)點(diǎn)在定直線上.

【解析】

1)設(shè)出直線的方程為,由直線和圓相切的條件:,解得;

2)設(shè)出,運(yùn)用導(dǎo)數(shù)求得切線的斜率,求得為切點(diǎn)的切線方程,再由向量的坐標(biāo)表示,可得在定直線上;

解:(1)依題意設(shè)直線的方程為,

由已知得:圓的圓心,半徑

因?yàn)橹本與圓相切,

所以圓心到直線的距離

,解得(舍去).

所以;

2)依題意設(shè),由(1)知拋物線方程為,

所以,所以,設(shè),則以為切點(diǎn)的切線的斜率為,

所以切線的方程為

,,即軸于點(diǎn)坐標(biāo)為

所以, ,

設(shè)點(diǎn)坐標(biāo)為,則,

所以點(diǎn)在定直線上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),討論極值點(diǎn)的個(gè)數(shù);

2)若函數(shù)有兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為2,且過點(diǎn).

1)求橢圓的方程;

2)已知是橢圓的內(nèi)接三角形,若坐標(biāo)原點(diǎn)的重心,求點(diǎn)到直線距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某調(diào)查機(jī)構(gòu)對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、“90從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中正確的是(

注:“901990年及以后出生的人,“801980-1989年之間出生的人,“801979年及以前出生的人.

A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中“90占一半以上

B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的20%

C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)“90“80

D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)“90“80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:過橢圓上的一點(diǎn)(不與長(zhǎng)軸的端點(diǎn)重合)與橢圓的兩個(gè)焦點(diǎn)確定的三角形稱為橢圓的焦點(diǎn)三角形;已知過橢圓上一點(diǎn)P(不與長(zhǎng)軸的端點(diǎn)重合)的焦點(diǎn)三角形,且

1)求證:焦點(diǎn)三角形的面積為定值;

2)已知橢圓的一個(gè)焦點(diǎn)三角形為,;

,求點(diǎn)的橫坐標(biāo)的范圍;

,過點(diǎn)的直線軸交于點(diǎn),且,記,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù),.

1)討論函數(shù)的單調(diào)性;

2)若上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論的單調(diào)性;

(Ⅱ)當(dāng)存在三個(gè)不同的零點(diǎn)時(shí),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)只能同時(shí)滿足下列三個(gè)條件中的兩個(gè):函數(shù)的最大值為2;函數(shù)的圖象可由的圖象平移得到;函數(shù)圖象的相鄰兩條對(duì)稱軸之間的距離為.

1)請(qǐng)寫出這兩個(gè)條件序號(hào),并求出的解析式;

2)求方程在區(qū)間上所有解的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

如圖,在四面體中,、分別是、的中點(diǎn),、分別是上的動(dòng)點(diǎn),且相交于點(diǎn).下列判斷中:

①直線經(jīng)過點(diǎn)

;

、、四點(diǎn)共面,且該平面把四面體的體積分為相等的兩部分.

所有正確的序號(hào)為

__________

查看答案和解析>>

同步練習(xí)冊(cè)答案