(x-1)5的展開式中,x3的系數(shù)為 ( 。
A、-10B、-5C、5D、10
考點:二項式系數(shù)的性質(zhì)
專題:二項式定理
分析:先求得二項式展開式的通項公式,再令x的冪指數(shù)等于3,求得r的值,即可求得含x3的項的系數(shù).
解答: 解:(x-1)5的展開式的通項公式為 Tr+1=
C
r
5
•(-1)r•x5-r,
令5-r=3,求得r=2,∴x3的系數(shù)為
C
2
5
=10,
故選:D.
點評:本題主要考查二項式定理的應(yīng)用,二項式展開式的通項公式,求展開式中某項的系數(shù),屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,l1∥l2∥l3,下列比例式正確的是(  )
A、
AD
DF
=
CE
BC
B、
AD
BE
=
BC
AF
C、
CE
DF
=
AD
BC
D、
AF
DF
=
BE
CE

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足:f(1)=
1
2
,對任意實數(shù)x,y都有f(x+y)+f(x-y)=2f(x)f(y)成立,則
2013
k=1
f(k)=(  )
A、1
B、0
C、
1
2
D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3+x-3的零點落在的區(qū)間是( 。
A、[0,1]
B、[1,2]
C、[2,3]
D、[3,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

線性回歸方程表示的直線
y
=bx+a必經(jīng)過(  )
A、(0,0)
B、(
.
x
,0)
C、(
.
x
,
.
y
D、(0,
.
y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a1=1,an=an-1+3n-1,求數(shù)列{an}的通項公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD底面ABCD是矩形PA⊥平面ABCD,AD=2,AB=1,E、F分別是線段AB,BC的中點,
(Ⅰ)在PA上找一點G,使得EG∥平面PFD;.
(Ⅱ)若PB與平面ABCD所成的角為45°,求三棱錐D-EFG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1的一個焦點為F(2,0),且離心率為
6
3

(Ⅰ)求橢圓方程;
(Ⅱ)斜率為k的直線l過點F,且與橢圓交于A,B兩點,為直線x=3上的一點,若△ABP為等邊三角形,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為:ρsin2θ=cosθ.
(1)求曲線C的直角坐標(biāo)方程;
(2)若直線L的參數(shù)方程為
x=2-
2
2
t
y=
2
2
t
(t為參數(shù)),直線L與曲線C相交于A、B兩點,求|AB|.

查看答案和解析>>

同步練習(xí)冊答案