平面幾何中圓的垂徑定理(弦的中點(diǎn)與圓心的連線必定垂直于這條弦),在解析幾何中可以這樣敘述:若M是圓O:x2+y2=r2(r>0)的弦AB的中點(diǎn),則直線OM與AB的斜率之積為定值(即為-1).
(1)請?jiān)跈E圓+=1(a>b>0)中,寫出與上述定理類似的結(jié)論,并予以證明.
(2)若把(1)中的結(jié)論類比到雙曲線-=1(a>0,b>0)中,則直線OM與AB的斜率之積是什么?(不必證明)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
傳說古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家經(jīng)常在沙灘上面畫點(diǎn)或用小石子表示數(shù).他們研究過如圖所示的三角形數(shù):
將三角形數(shù)1,3,6,10,…記為數(shù)列{an},將可被5整除的三角形數(shù)按從小到大的順序組成一個(gè)新數(shù)列{bn},可以推測:
(1)b2 012是數(shù)列{an}中的第______項(xiàng);
(2)b2k-1=________.(用k表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
下列表述正確的是________.
①歸納推理是由部分到整體的推理;
②歸納推理是由一般到一般的推理;
③演繹推理是由一般到特殊的推理;
④類比推理是由特殊到一般的推理;
⑤類比推理是由特殊到特殊的推理.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
對“a,b,c是不全相等的正數(shù)”,給出下列判斷:
①(a-b)2+(b-c)2+(c-a)2≠0;
②a=b與b=c及a=c中至少有一個(gè)成立;
③a≠c,b≠c,a≠b不能同時(shí)成立.
其中判斷正確的個(gè)數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
把下面在平面內(nèi)成立的結(jié)論類比地推廣到空間,并判斷類比的結(jié)論是否成立:
(1)如果一條直線和兩條平行線中的一條相交,則必和另一條相交;
(2)如果兩條直線同時(shí)垂直于第三條直線,則這兩條直線互相平行.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
.已知a,b為非零實(shí)數(shù),則下列四個(gè)條件中使不等式:+≤-2成立的一個(gè)充分不必要條件是________.
①ab>0 ②ab<0 ③a>0,b<0 ④a>0,b>0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com