【題目】2015年7月9日21時(shí)15分,臺(tái)風(fēng)“蓮花”在我國(guó)廣東省陸豐市甲東鎮(zhèn)沿海登陸,給當(dāng)?shù)厝嗣裨斐闪司薮蟮呢?cái)產(chǎn)損失,適逢暑假,小張調(diào)查了當(dāng)?shù)啬承^(qū)的100戶居民由于臺(tái)風(fēng)造成的經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成, , , , 五組,并作出如下頻率分布直方圖(圖1):
(Ⅰ)臺(tái)風(fēng)后居委會(huì)號(hào)召小區(qū)居民為臺(tái)風(fēng)重災(zāi)區(qū)捐款,小張調(diào)查的100戶居民捐款情況如右下表格,在圖2表格空白處填寫(xiě)正確數(shù)字,并說(shuō)明是否有以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?
(Ⅱ)將上述調(diào)查所得到的頻率視為概率. 現(xiàn)在從該地區(qū)大量受災(zāi)居民中,采用隨機(jī)抽樣方法每次抽取1戶居民,抽取3次,記被抽取的3戶居民中自身經(jīng)濟(jì)損失超過(guò)4000元的人數(shù)為. 若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列,期望和方差.
附:臨界值表
0.10 | 0.05 | 0.025 | |
| 2.706 | 3.841 | 5.024 |
隨機(jī)量變
【答案】(Ⅰ)答案見(jiàn)解析;(Ⅱ)答案見(jiàn)解析.
【解析】試題分析:
(1)由題意寫(xiě)出列聯(lián)表,計(jì)算可得,所以有以上的把握認(rèn)為捐款數(shù)額是否多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān).
(2)題中所給的分布列為二項(xiàng)分布,據(jù)此求得分布列,然后計(jì)算可得, .
試題解析:
(Ⅰ)由頻率分布直方圖可知,在抽取的100人中,經(jīng)濟(jì)損失不超過(guò)4000元的有70人,經(jīng)濟(jì)損失超過(guò)4000元的有30人,則表格數(shù)據(jù)如下
經(jīng)濟(jì)損失不超過(guò) 4000元 | 經(jīng)濟(jì)損失超過(guò) 4000元 | 合計(jì) | |
捐款超過(guò) 500元 | 60 | 20 | 80 |
捐款不超 過(guò)500元 | 10 | 10 | 20 |
合計(jì) | 70 | 30 | 100 |
.
因?yàn)?/span>, .
所以有以上的把握認(rèn)為捐款數(shù)額是否多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān).
(Ⅱ)由頻率分布直方圖可知抽到自身經(jīng)濟(jì)損失超過(guò)4000元居民的頻率為0.3,將頻率視為概率.
由題意知的取值可能有,
,
,
,
,
,
從而的分布列為
,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義域?yàn)?/span>的奇函數(shù).
(1)求實(shí)數(shù)的值;
(2)若,不等式在上恒成立,求實(shí)數(shù)的取值范圍;
(3)若且 上最小值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】長(zhǎng)方體中, , 分別是, 的中點(diǎn), , .
(Ⅰ)求證: 平面;
(Ⅱ)求證:平面平面;
(Ⅲ)在線段上是否存在一點(diǎn),使得二面角為,若存在,求的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex+ax-a(a∈R且a≠0)在點(diǎn)處的切線
與直線平行, (1)求實(shí)數(shù)a的值,
(2)求此時(shí)f(x)在[-2,1]上的最大、最小值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(1)若在上存在極值點(diǎn),求的取值范圍;
(2)設(shè), ,若存在最大值,記為,則當(dāng)時(shí), 是否存在最大值?若存在,求出其最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: ()的焦距為,點(diǎn)在上.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點(diǎn)在上,點(diǎn)的軌跡為曲線,過(guò)原點(diǎn)作直線與曲線交于、兩點(diǎn),點(diǎn),證明: 為定值,并求出定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓()的離心率為,短軸的一個(gè)端點(diǎn)為.過(guò)橢圓左頂點(diǎn)的直線與橢圓的另一交點(diǎn)為.
(1)求橢圓的方程;
(2)若與直線交于點(diǎn),求的值;
(3)若,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(1)當(dāng)時(shí),求的最小值;
(2)存在時(shí),使得不等式成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著手機(jī)的發(fā)展,“微信”越來(lái)越成為人們交流的一種方式.某機(jī)構(gòu)對(duì)“使用微信交流”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們年齡的頻數(shù)分布及對(duì)“使用微信交流”贊成人數(shù)如下表.
年齡(單位:歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 5 | 10 | 12 | 7 | 2 | 1 |
(Ⅰ)若以“年齡45歲為分界點(diǎn)”,由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有99%的把握認(rèn)為“使用微信交流”的態(tài)度與人的年齡有關(guān);
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計(jì) | |
贊成 | |||
不贊成 | |||
合計(jì) |
(Ⅱ)若從年齡在[25,35)和[55,65)的被調(diào)查人中按照分層抽樣的方法選取6人進(jìn)行追蹤調(diào)查,并給予其中3人“紅包”獎(jiǎng)勵(lì),求3人中至少有1人年齡在[55,65)的概率.
參考數(shù)據(jù)如下:
附臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
的觀測(cè)值: (其中)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com