已知數(shù)列{an}是等比數(shù)列,且a2+a6=3,a6+a10=12,則a8+a12=( 。
A、12
2
B、24
C、24
2
D、48
考點(diǎn):等比數(shù)列的性質(zhì)
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:設(shè)等比數(shù)列{an}的公比為q,利用等比數(shù)列的通項(xiàng)公式得出q2=2,再求值即可.
解答: 解:設(shè)等比數(shù)列{an}的公比為q,且q≠0,
∵a2+a6=3,a6+a10=12,
∴q4=4,
∴q2=2,
∴a8+a12=q6(a2+a6)=24
故選:B.
點(diǎn)評(píng):本題考查等比數(shù)列的通項(xiàng)公式的靈活應(yīng)用,以及整體代換思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)命題p:
a
=(3,1),
b
=(m,2)且
a
b
;命題q:關(guān)于x的函數(shù)y=(m2-5m-5)ax(a>0且a≠1)是指數(shù)函數(shù),則命題p是命題q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),且圖象關(guān)于直線x=2對(duì)稱.
(1)證明f(x)是周期函數(shù)
(2)若當(dāng)x∈[-2,2]時(shí),f(x)=-x2+1,求當(dāng)x∈[-6,-2]時(shí),f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將函數(shù)y=2sin(ωx-
π
4
)(ω>0)的圖象分別向左.向右各平移
π
4
個(gè)單位后,所得的兩個(gè)圖象的對(duì)稱軸重合,則ω的最小值為(  )
A、
1
2
B、1
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α為第四象限角,sinα+cosα=
2
3
,則cos2α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z=
1
i(i+1)
,則z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

cos2x
sinx-cosx
=
1
5
,則tanx+cotx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)z=
1
i
在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為( 。
A、(0,-1)
B、(0,1)
C、(-1,0)
D、(1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
5
2
sinAsinx+cos2x(x∈R),且滿足cos(A+
π
4
)=-
2
10
,A∈(
π
4
,
π
2

(1)求sinA的值;
(2求f(x)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案