已知函數(shù)f(x)=ax3+bx2+c(a,b,c∈R,a≠0)的圖象過點P(-1,2)且在P處的切線與直線x-3y=0垂直.
(Ⅰ)若c=0,試求函數(shù)f(x)的單調區(qū)間;
(Ⅱ)若a>0,b>0且f(x)在區(qū)間(-∞,m)及(n,+∞)上均為增函數(shù),試證:n-m>1.
【答案】分析:(Ⅰ)由題意可得f′(-1)=3a-2b,過P的切線與直線x-3y=0垂直,c=0,可解得a=1,b=3,從而利用導數(shù)法可求得函數(shù)f(x)的單調區(qū)間;
(Ⅱ)由(Ⅰ)知,b=(a+1),代入f′(x)=3ax2+2bx,可得f'(x)=3ax2+3(a+1)x,利用f′(x)≥0得:x≤-或x≥0,結合題意即可證得結論.
解答:解:(Ⅰ)∵f(x)=ax3+bx2+c,
∴f′(x)=3ax2+2bx,
∴f′(-1)=3a-2b,
又過P的切線與直線x-3y=0垂直,
∴3a-2b=-3,
又c=0,
∴f(-1)=-a+b=2,聯(lián)立,解得a=1,b=3.
∴f(x)=x3+3x2,f'(x)=3x2+6x;
由f'(x)≥0⇒x≤-2或x≥0;f'(x)<0⇒-2<x<0
∴f(x)在(-∞,-2]及[0,+∞)上單調遞增,在[-2,0]上單調遞減.
(Ⅱ)證明:由(Ⅰ)知,b=(a+1),
∴f'(x)=3ax2+3(a+1)x且a>0,令f′(x)≥0得:x≤-或x≥0,
又f(x)在區(qū)間(-∞,m)及(n,+∞)上均為增函數(shù),
∴n-m≥0-(-)==1+>1.
點評:本題考查利用導數(shù)研究函數(shù)的單調性,求得f(x)=x3+3x2是基礎,靈活應用導數(shù)與單調性間的關系是解決問題的關鍵,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案