【題目】如圖,在四邊形中,,,點上,且,現(xiàn)將沿折起,使點到達點的位置,且與平面所成的角為,

1)求證:平面平面;

2)求二面角的余弦值.

【答案】(1)見解析; (2).

【解析】

1)根據折疊前后關系得PC⊥CD,根據平幾知識得BE//CD,即得PC⊥BE,再利用線面垂直判定定理得EB⊥平面PBC,最后根據面面垂直判定定理得結論,(2)先根據線面角得△PBE為等腰直角三角形,再取BC的中點O,證得PO⊥平面EBCD,建立空間直角坐標系,設立各點坐標,列方程組解得各面法向量,根據向量數(shù)量積得向量夾角,最后根據向量夾角與二面角關系得結果.

(1)證明:∵ABCD,ABBE,∴CD//EB,

∵AC⊥CD,∴PC⊥CD,∴EB⊥PC,且PC∩BC=C,

∴EB⊥平面PBC,

又∵EB平面DEBC,∴平面PBC 平面DEBC;

(2)由(1)知EB⊥平面PBC,∴EB⊥PB,

由PE與平面PBC所成的角為45°得∠EPB=45°,

∴△PBE為等腰直角三角形,∴PB=EB,

∵AB//DE,結合CD//EB 得BE=CD=2,

∴PB=2,故△PBC為等邊三角形,

取BC的中點O,連結PO,

∵ PO⊥BC,∴PO⊥平面EBCD,

以O為坐標原點,過點O與BE平行的直線為x軸,CB所在的直線為y軸,OP所在的直線為z軸建立空間直角坐標系如圖,

,

從而,, ,

設平面PDE的一個法向量為,平面PEB的一個法向量為,

則由,令,

,令,

設二面角D-PE-B的大小為,則

即二面角D-PE-B的余弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線在點處的切線斜率為0.

(1)討論函數(shù)的單調性;

(2)在區(qū)間上沒有零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C 的右焦點為F(2,0),過點F的直線交橢圓于M、N兩點且MN的中點坐標為

(Ⅰ)求橢圓C的方程;

(Ⅱ)設直線l不經過點P(0,b)且與C相交于A,B兩點,若直線PA與直線PB的斜率的和為1,試判斷直線 l是否經過定點,若經過定點,請求出該定點;若不經過定點,請給出理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4— 4:坐標系與參數(shù)方程

設極坐標系與直角坐標系有相同的長度單位,原點為極點,軸正半軸為極軸,曲線的參數(shù)方程為是參數(shù)),直線的極坐標方程為

(Ⅰ)求曲線的普通方程和直線的參數(shù)方程;

(Ⅱ)設點,若直線與曲線相交于兩點,且,求的值﹒

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在坐標原點,焦點在坐標軸上,且經過、、三點.

1)求橢圓的方程;

2)若直線)與橢圓交于、兩點,證明直線與直線的交點在直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐P-ABCD,底面ABCD是邊長為的正方形,平面PAC底面ABCD,PA=PC=

1)求證:PB=PD;

2)若點M,N分別是棱PA,PC的中點,平面DMN與棱PB的交點Q,則在線段BC上是否存在一點H,使得DQPH,若存在,BH的長,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4—4:坐標系與參數(shù)方程

在平面直角坐標系中,曲線的參數(shù)方程為,其中為參數(shù),在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,點的極坐標為,直線的極坐標方程為.

(1)求直線的直角坐標方程與曲線的普通方程;

(2)若是曲線上的動點,為線段的中點.求點到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的短軸長為,且離心率為,圓

(1)求橢圓C的方程,

(2)P在圓D上,F為橢圓右焦點,線段PF與橢圓C相交于Q,若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調區(qū)間和極值;

(2)若不等式在區(qū)間上恒成立,求實數(shù)的取值范圍;

(3)求證:.

查看答案和解析>>

同步練習冊答案