【題目】已知函數(shù)

1)若上具有單調(diào)性,求實數(shù)k的取值范圍;

(2)求上的最大值.

【答案】1k≤40,或k≥160;(2)答案不唯一,見解析

【解析】

1)已知函數(shù),求出其對稱軸x,要求fx)在[5,20]上具有單調(diào)性,只要對稱軸≤5,或≥20,從而求出k的范圍即可;

2)由二次函數(shù)的性質(zhì),討論對稱軸在區(qū)間[5,20]的左側(cè),區(qū)間內(nèi),右側(cè)時的單調(diào)性,即可得上最大值.

1)∵函數(shù)fx)=4x2kx5的對稱軸為x,∵函數(shù)fx)=4x2kx5[520]上具有單調(diào)性,

根據(jù)二次函數(shù)的性質(zhì)可知對稱軸x≤5,或x≥20,解得:k≤40,或k≥160;

2)當≤5,即k≤40時,上遞增,則;

,即k≤100時,上遞減,在上遞增,

所以;

,即k100時,上遞減,在上遞增,

所以;

≥20,即k≥160時,上遞減,所以.

綜上:當k≤100時,;當時,.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】本著健康、低碳的生活理念,租自行車騎游的人越來越多.某自行車租車點的收費標準是每車每次租車時間不超過兩小時免費,超過兩小時的部分每小時收費標準為2元(不足1小時的部分按1小時計算).有甲、乙兩人相互獨立來該租車點租車騎游(各租一車一次),設甲、乙不超過兩小時還車的概率分別為;兩小時以上且不超過三小時還車的概率分別為;兩人租車時間都不會超過四小時.

(1)求出甲、乙兩人所付租車費用相同的概率;

(2)求甲、乙兩人所付的租車費用之和為4元時的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知直線的參數(shù)方程為為參數(shù), ),以坐標原點為極點, 軸正半軸為極軸建立極坐標系,圓的極坐標方程為.

(Ⅰ)討論直線與圓的公共點個數(shù);

(Ⅱ)過極點作直線的垂線,垂足為,求點的軌跡與圓相交所得弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】釣魚島及其附屬島嶼是中國固有領土,如圖:點分別表示釣魚島、南小島、黃尾嶼,點在點的北偏東方向,點在點的南偏西方向,點在點的南偏東方向,且兩點的距離約為3海里.

(1)求兩點間的距離;(精確到0.01)

(2)某一時刻,我國一漁船在點處因故障拋錨發(fā)出求教信號.一艘國艦艇正從點正東10海里的點處以18海里/小時的速度接近漁船,其航線為 (直線行進),而我東海某漁政船正位于點南偏西方向20海里的點處,收到信號后趕往救助,其航線為先向正北航行8海里至點處,再折向點直線航行,航速為22海里/小時.漁政船能否先于國艦艇趕到進行救助?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了研究家用轎車在高速公路上的速情況,交通部門對名家用轎車駕駛員進行調(diào)查,得到其在高速公路上行駛時的平均車速情況為:在名男性駕駛員中,平均車速超過的有人,不超過的有人.在名女性駕駛員中,平均車速超過的有人,不超過的有.

1)完成下面的列聯(lián)表,并判斷是否有的把握認為平均車速超過與性別有關,(結(jié)果保留小數(shù)點后三位)

平均車速超過人數(shù)

平均車速不超過人數(shù)

合計

男性駕駛員人數(shù)

女性駕駛員人數(shù)

合計

2)以上述數(shù)據(jù)樣本來估計總體,現(xiàn)從高速公路上行駛的大量家用轎車中隨機抽取輛,若每次抽取的結(jié)果是相互獨立的,問這輛車中平均有多少輛車中駕駛員為男性且車速超過?

附:(其中為樣本容量)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知.

1)求證:恒成立;

2)試求的單調(diào)區(qū)間;

3)若,,且,其中,求證:恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線為參數(shù)),曲線為參數(shù)).

(1)設相交于兩點,求;

(2)若把曲線上各點的橫坐標壓縮為原來的倍,縱坐標壓縮為原來的倍,得到曲線,設點是曲線上的一個動點,求它到直線的距離的最大時,點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在考察黃煙經(jīng)過藥物處理和發(fā)生青花病的關系時,得到如下數(shù)據(jù):在試驗的470株黃煙中,經(jīng)過藥物處理的黃煙有25株發(fā)生青花病,60株沒有發(fā)生青花病;未經(jīng)過藥物處理的有185株發(fā)生青花病,200株沒有發(fā)生青花病.試推斷藥物處理跟發(fā)生青花病是否有關系.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點,直線,設圓的半徑為1, 圓心在.

1)若圓心也在直線上,過點作圓的切線,求切線方程;

2)若圓上存在點,使,求圓心的橫坐標的取值范圍.

查看答案和解析>>

同步練習冊答案