已知函數(shù),對任意,都有,則函數(shù)的最大值與最小值之和是         .

3

解析試題分析:因為,,所以有:設(shè)x∈R,t>0,x+t>x,則

∴f(x)在R上是單調(diào)函數(shù),g(x) 在R上是單調(diào)函數(shù)。
令x=y=0,則f(0)+f(0)=f(0+0)+m,∴f(0)=m
令x=0,y=1,則,f(1)=f(0)+f(1)+m,所以,f(0)=-m,故,m=0.
∴g(x)min +g(x)max =f(-1)+m++f(1)+m+,2m+=3.
考點:函數(shù)的單調(diào)性,函數(shù)的最值.
點評:中檔題,利用抽象函數(shù),研究函數(shù)的單調(diào)性,從而認(rèn)識到函數(shù)取到最值的情況。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

函數(shù),若關(guān)于的方程有三個不同實根,則的取值范圍是            

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

若對于任意實數(shù)x不等式恒成立,則實數(shù)的取值范圍是:_        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知函數(shù)在R是奇函數(shù),且當(dāng)時,,則時,的解析式為____   ___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

函數(shù)的定義域為             .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

若函數(shù)有兩個不同的零點,則實數(shù)的取值范圍是                

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

時,函數(shù)上有且只有一個零點,則=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

函數(shù)的定義域為D,若對任意的、,當(dāng)時,都有,則稱函數(shù)在D上為“非減函數(shù)”.設(shè)函數(shù)上為“非減函數(shù)”,且滿足以下三個條件:(1);(2);(3),則             

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知,函數(shù)若函數(shù)上的最大值比最小值大,則的值為             .

查看答案和解析>>

同步練習(xí)冊答案