【題目】設(shè)實(shí)數(shù)滿足,其中.實(shí)數(shù)滿足.
(1)若,且為真,求實(shí)數(shù)的取值范圍;
(2)非是非的充分不必要條件,求實(shí)數(shù)的取值范圍.
【答案】(1);(2).
【解析】
(1)將代入中的不等式,并解出該不等式,同時(shí)也解出中的不等式組,由為真,可知、均為真命題,將、中的不等式(組)的解集取交集可得出實(shí)數(shù)的取值范圍;
(2)求出非與非中的取值范圍,結(jié)合已知條件轉(zhuǎn)化為兩集合的包含關(guān)系,可得出關(guān)于實(shí)數(shù)的不等式組,即可解得實(shí)數(shù)的取值范圍.
(1)當(dāng)時(shí),解不等式,解得,即.
解不等式,解得,解不等式,解得或,.
,若為真,則、均為真命題,
此時(shí),實(shí)數(shù)的取值范圍是;
(2)當(dāng)時(shí),解不等式,解得,即,
則非或,非或.
因?yàn)榉?/span>是非的充分不必要條件,則或或,
所以,,解得.
因此,實(shí)數(shù)的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是定義在R上的函數(shù),對任意的,恒有,且當(dāng)時(shí), .
(1)求的值;
(2)求證:對任意,恒有.
(3)求證:在R上是減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知△ABC的面積為
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過平面直角坐標(biāo)系中的點(diǎn)P(4-3a,)(a∈R)作圓x2+y2=1的兩條切線PA,PB,切點(diǎn)分別為A,B,則數(shù)量積的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中心接到其正東、正西、正北方向三個(gè)觀測點(diǎn)的報(bào)告:正西、正北兩個(gè)觀測點(diǎn)同時(shí)聽到了一聲巨響,正東觀測點(diǎn)聽到的時(shí)間比其它兩觀測點(diǎn)晚4.已知各觀測點(diǎn)到該中心的距離是1020.則該巨響發(fā)生在接報(bào)中心的( )處.(假定當(dāng)時(shí)聲音傳播的速度為340,相關(guān)各點(diǎn)均在同一平面上)
A. 西偏北方向,距離 B. 東偏南方向,距離
C. 西偏北方向,距離 D. 東偏南方向,距離
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且在軸上的頂點(diǎn)分別為,.
(1)求橢圓的方程;
(2)若直線與軸交于點(diǎn),點(diǎn)為直線上異于點(diǎn)的任一點(diǎn),直線分別與橢圓交于點(diǎn),試問直線能否通過橢圓的焦點(diǎn)?若能,求出的值,若不能,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一張坐標(biāo)紙上一已作出圓及點(diǎn),折疊此紙片,使與圓周上某點(diǎn)重合,每次折疊都會留下折痕,設(shè)折痕與直線的交點(diǎn)為,令點(diǎn)的軌跡為.
(1)求軌跡的方程;
(2)若直線與軌跡交于兩個(gè)不同的點(diǎn),且直線與以為直徑的圓相切,若,求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市的電視發(fā)射搭CD建在市郊的一座小山上,如圖所示,小山高BC為30米,在地平面上有一點(diǎn)A,測得A,C兩點(diǎn)間距離為50米.
(1)如果從點(diǎn)A觀測電視發(fā)射塔的視角∠CAD=,求這座電視發(fā)射塔的高度;
(2)點(diǎn)A在何位置時(shí),角∠CAD最大.(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線與圓C相切,圓心C的坐標(biāo)為
(1)求圓C的方程;
(2)設(shè)直線y=x+m與圓C交于M、N兩點(diǎn).
①若,求m的取值范圍;
②若OM⊥ON,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com