【題目】《中國好聲音()》是由浙江衛(wèi)視聯(lián)合星空傳媒旗下燦星制作強(qiáng)力打造的大型勵(lì)志專業(yè)音樂評論節(jié)目,于2012713日在浙江衛(wèi)視播出.每期節(jié)目有四位導(dǎo)師參加.導(dǎo)師背對歌手,當(dāng)每位參賽選手演唱完之前有導(dǎo)師為其轉(zhuǎn)身,則該選手可以選擇加入為其轉(zhuǎn)身的導(dǎo)師的團(tuán)隊(duì)中接受指導(dǎo)訓(xùn)練.已知某期《中國好聲音》中,6位選手唱完后,四位導(dǎo)師為其轉(zhuǎn)身的情況如下表所示:

導(dǎo)師轉(zhuǎn)身人數(shù)(人)

4

3

2

1

獲得相應(yīng)導(dǎo)師轉(zhuǎn)身的選手人數(shù)(人)

1

2

2

1

現(xiàn)從這6位選手中隨機(jī)抽取兩人考查他們演唱完后導(dǎo)師的轉(zhuǎn)身情況.

1)請列出所有的基本事件;

2)求兩人中恰好其中一位為其轉(zhuǎn)身的導(dǎo)師不少于3人,而另一人為其轉(zhuǎn)身的導(dǎo)師不多于2人的概率.

【答案】1)所有的基本事件見解析;(2.

【解析】試題分析:(1) 設(shè)位選手中,4位導(dǎo)師為其轉(zhuǎn)身,3位導(dǎo)師為其轉(zhuǎn)身,2位導(dǎo)師為其轉(zhuǎn)身,只有1位導(dǎo)師為其轉(zhuǎn)身,一一列出基本事件共有即可;(2)在(1)所列基本事件中找出事件兩人中恰好其中一位為其轉(zhuǎn)身的導(dǎo)師人數(shù)不少于3人,而另一人為其轉(zhuǎn)身的導(dǎo)師不多于2所包含的基本事件共個(gè),即可計(jì)算其概率.

試題解析: (1)設(shè)6位選手中,4位導(dǎo)師為其轉(zhuǎn)身,3位導(dǎo)師為其轉(zhuǎn)身,2位導(dǎo)師為其轉(zhuǎn)身,只有1位導(dǎo)師為其轉(zhuǎn)身.………………3

則所有的基本事件有15個(gè).……6

2)事件兩人中恰好其中一位為其轉(zhuǎn)身的導(dǎo)師人數(shù)不少于3人,而另一人為其轉(zhuǎn)身的導(dǎo)師不多于2所包含的基本事件有:9個(gè),………………9

故所求概率為.………………12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù),,

1求曲線處的切線方程

2討論函數(shù)的極小值;

3若對任意的總存在,使得成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知|a|=4,|b|=3,(2a-3b)·(2ab)=61,

(1)求ab的夾角θ; (2)求|ab|;

(3)若a, b,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)樣本x1,x2,…,x10數(shù)據(jù)的平均值和方差分別為3和5,若yi=xi+a(a為非零實(shí)數(shù),i=1,2,…,10),則y1,y2,…,y10的均值和方差分別為( )

A. 3,5 B. 3+a,5 C. 3+a,5+a D. 3,5+a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若曲線在點(diǎn)處與直線相切,求的值;

(2)若函數(shù)有兩個(gè)零點(diǎn),,試判斷的符號,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的短軸長為2,且函數(shù)的圖象與橢圓僅有兩個(gè)公共點(diǎn),過原點(diǎn)的直線與橢圓交于兩點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)點(diǎn)為線段的中垂線與橢圓的一個(gè)公共點(diǎn),求面積的最小值,并求此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為數(shù)列的前項(xiàng)和,對任意的,都有,數(shù)列滿足, .

(1)求證:數(shù)列是等比數(shù)列,并求的通項(xiàng)公式;

(2)求數(shù)列的通項(xiàng)公式;

(3)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1存在,使得的最大值,求取值范圍;

2任意成立時(shí),的最大值為1,取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為拋物線 )的焦點(diǎn),直線 交拋物線, 兩點(diǎn).

(Ⅰ)當(dāng), 時(shí),求拋物線的方程;

(Ⅱ)過點(diǎn) 作拋物線的切線, , 交點(diǎn)為,若直線與直線斜率之和為,求直線的斜率.

查看答案和解析>>

同步練習(xí)冊答案