AB∥α,AC∥BD,C∈α,D∈α,求證:AC=BD.
考點(diǎn):直線與平面平行的性質(zhì)
專題:證明題,空間位置關(guān)系與距離
分析:利用線面平行的性質(zhì)可得結(jié)論.
解答: 證明:連接CD
∵AC∥BD,
∴四邊形ABCD是平面四邊形,
∴AB?平面ABCD,
又∵面ABCD∩α=CD,AB∥α,
∴AB∥CD.
又AC∥BD.
∴四邊形ABCD是平行四邊形.
∴AC=BD.
點(diǎn)評(píng):正確運(yùn)用線面平行的性質(zhì)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a<0,函數(shù)f(x)=
1+x
+
1-x
,g(x)=a
1-x2

(Ⅰ)求函數(shù)y=f2(x)的值域;
(Ⅱ)記函數(shù)h(x)=f(x)+g(x)的最大值為H(a).
(。┣驢(a)的表達(dá)式;
(ⅱ)試求滿足H(a)=H(
1
a
)的所有實(shí)數(shù)a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l的極坐標(biāo)方程為:2ρcos(θ+
π
6
)=1,圓C的極坐標(biāo)方程為ρ=
2
cos(θ-
π
4

(Ⅰ)把直線l與圓C的方程化為直角坐標(biāo)系方程;
(Ⅱ)設(shè)l與圓C相交于兩點(diǎn)A、B,求點(diǎn)A、B兩點(diǎn)的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式(1-2ax)2<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1
1+
2
+
1
2
+
3
+
1
3
+
4
+
1
4
+
5
+
1
5
+
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
x•sinθ
+lnx在區(qū)間[1,+∞)上為增函數(shù),且θ∈(0,π).
(1)求θ的值;
(2)已知函數(shù)g(x)=-3x-lnx+m,若在(0,+∞)上至少存在一個(gè)x0,使得f(x0)≤g(x0)成立.求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=(2m+3)x-2是冪函數(shù),則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2014年“五一”期間,高速公路車輛較多.某調(diào)查公司在一服務(wù)區(qū)從七座以下小型汽車中按進(jìn)服務(wù)區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢問調(diào)查,將他們?cè)谀扯胃咚俟返能囁伲╧m/t)分成六段:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90)后得到如圖所示的頻率分布直方圖.若從車速在[60,70)的車輛中任抽取2輛,則車速在[65,70)的車輛至少有一輛的概率
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:(x-1)(x+1)6=a0+a1x+a2x2+…+a7x7,則a0+2a1+3a2+…7a7=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案