【題目】已知四棱錐的底面為直角梯形,,,是以為底邊的等腰直角三角形.
(1)求證:;
(2)若為的垂心,求二面角的余弦值.
【答案】(1)證明見解析;(2)
【解析】
(1)取的中點,連結(jié),證明平面,即可得到答案;
(2)證明兩兩互相垂直,再以為原點,分別為軸,建立空間直角坐標系,求得兩個面的法向量,進而求得二面角的余弦值.
(1)取的中點,連結(jié),
因為是以為底邊的等腰直角三角形,
所以,
因為,所以四邊形為正方形,
所以,又,
所以平面,
所以.
(2)連結(jié)并延長交于,由(1)得,
所以,因為,所以為的中點,
取的中點為,連結(jié),則以兩兩互相垂直,
以為原點,分別為軸,建立如圖所示的空間直角坐標系,
則,
所以,
設(shè)為面的一個法向量,則
取,所以,
設(shè)為面的一個法向量,則
取,所以,
所以,
因為二面角為鈍二面角,
所以二面角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】《漢字聽寫大會》不斷創(chuàng)收視新高,為了避免“書寫危機”弘揚傳統(tǒng)文化,某市對全市一定年齡的市民進行了漢字聽寫測試.為了調(diào)查被測試市民的基本情況,組織方從參加測試的市民中隨機抽取120名市民,按他們的年齡分組:第一組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.
(1)若電視臺記者要從抽取的市民中選1人進行采訪,求被采訪人恰好在第1組或第4組的概率;
(2)已知第1組市民中男性有3名,組織方要從第1組中隨機抽取2名市民組成弘揚傳統(tǒng)文化宣傳隊,求至少有1名女性群眾的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐中,平面平面,,,若為的中點.
(1)證明:平面;
(2)求異面直線和所成角;
(3)設(shè)線段上有一點,當與平面所成角的正弦值為時,求的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校實行選科走班制度,張毅同學的選擇是物理、生物、政治這三科,且物理在層班級,生物在層班級.該校周一上午選科走班的課程安排如下表所示,張毅選擇三個科目的課各上一節(jié),另外一節(jié)上自習,則他不同的選課方法有( )
第一節(jié) | 第二節(jié) | 第三節(jié) | 第四節(jié) |
地理層2班 | 化學層3班 | 地理層1班 | 化學層4班 |
生物層1班 | 化學層2班 | 生物層2班 | 歷史層1班 |
物理層1班 | 生物層3班 | 物理層2班 | 生物層4班 |
物理層2班 | 生物層3班 | 物理層1班 | 物理層4班 |
政治1班 | 物理層3班 | 政治2班 | 政治3班 |
A.8種B.10種C.12種D.14種
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .若g(x)存在2個零點,則a的取值范圍是
A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .若g(x)存在2個零點,則a的取值范圍是
A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以原點為極點,軸為極軸的極坐標系中,圓的方程.
(1)寫出直線的普通方程和圓的直角坐標方程;
(2)若點的直角坐標為,圓與直線交于兩點,求弦中點的直角坐標和的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C的頂點在原點,對稱軸是x軸,并且經(jīng)過點,拋物線C的焦點為F,準線為l.
(1)求拋物線C的方程;
(2)過F且斜率為的直線h與拋物線C相交于兩點A、B,過A、B分別作準線l的垂線,垂足分別為D、E,求四邊形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com