【題目】某校實行選科走班制度,張毅同學(xué)的選擇是物理、生物、政治這三科,且物理在層班級,生物在層班級.該校周一上午選科走班的課程安排如下表所示,張毅選擇三個科目的課各上一節(jié),另外一節(jié)上自習(xí),則他不同的選課方法有(

第一節(jié)

第二節(jié)

第三節(jié)

第四節(jié)

地理2

化學(xué)3

地理1

化學(xué)4

生物1

化學(xué)2

生物2

歷史1

物理1

生物3

物理2

生物4

物理2

生物3

物理1

物理4

政治1

物理3

政治2

政治3

A.8B.10C.12D.14

【答案】B

【解析】

根據(jù)表格,利用分類討論思想進(jìn)行邏輯推理一一列舉即可.

張毅同學(xué)不同的選課方法如下:

物理A層1班,生物B層3班,政治3班;

物理A層1班,生物B層3班,政治2班;

物理A層1班,生物B層2班,政治3班;

物理A層3班,生物B層2班,政治3班;

物理A層3班,生物B層2班,政治1班;

物理A層2班,生物B層3班,政治1班;

物理A層2班,生物B層3班,政治3班;

物理A層4班,生物B層3班,政治2班;

物理A層4班,生物B層3班,政治1班;

物理A層4班,生物B層2班,政治1班;

共10種.

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,若點A為函數(shù)上的任意一點,點B為函數(shù)上的任意一點.

(1)求A,B兩點之間距離的最小值;

(2)若A,B為函數(shù)與函數(shù)公切線的兩個切點,求證:這樣的點B有且僅有兩個,且滿足條件的兩個點B的橫坐標(biāo)互為倒數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)證明:對任意的,存在唯一的,使;

3)設(shè)(2)中所確定的關(guān)于的函數(shù)為,證明:當(dāng)時,有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)是偶函數(shù),求實數(shù)的值;

2)若函數(shù),關(guān)于的方程有且只有一個實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中.

1)當(dāng)時,判斷函數(shù)在定義域上的單調(diào)性;

2)求函數(shù)的極值點;

3)當(dāng)時,試證明對任意的正整數(shù),不等式都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(Ⅰ)求的普通方程和的直角坐標(biāo)方程;

(Ⅱ)若交于,兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐的底面為直角梯形,,是以為底邊的等腰直角三角形.

(1)求證:

(2)若的垂心,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線為參數(shù)).以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線.

(1)求的普通方程和的直角坐標(biāo)方程;

(2)若曲線交于兩點,的中點為,點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某地有三家工廠,分別位于矩形ABCD的頂點A,B以及CD的中點P處,已知AB=20km,CB=10km,為了處理三家工廠的污水,現(xiàn)要在矩形ABCD內(nèi)(含邊界),且與A,B等距離的一點O處建造一個污水處理廠,并鋪設(shè)排污管道AO,BO,OP,設(shè)排污管道的總長為km

(I)設(shè),將表示成的函數(shù)關(guān)系式;

(II)確定污水處理廠的位置,使三條排污管道的總長度最短,并求出最短值.

查看答案和解析>>

同步練習(xí)冊答案