設(shè)等差數(shù)列的前項(xiàng)和為.且
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列滿足:,,求數(shù)列的前項(xiàng)和.
(1);(2).
解析試題分析:(1)根據(jù)等差數(shù)列的通項(xiàng)公式、求和公式把已知等式表示成首項(xiàng)與公差的等式, 解方程組求得首項(xiàng)與公差,從而得出數(shù)列的通項(xiàng)公式;(2)有累加原理把表示為,利用則可轉(zhuǎn)化為
,,可用裂項(xiàng)相消法求出數(shù)列數(shù)列的前項(xiàng)和
試題解析:(1),,
,解得,. 6分
(2)由,當(dāng)時(shí),
(也成立).
, 9分
. 13分
考點(diǎn):等差數(shù)列的性質(zhì),疊加原理,裂項(xiàng)相消法求和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列中,,,.
(1)證明:數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)在數(shù)列中,是否存在連續(xù)三項(xiàng)成等差數(shù)列?若存在,求出所有符合條件的項(xiàng);若不存在,請(qǐng)說明理由;
(3)若且,,求證:使得,,成等差數(shù)列的點(diǎn)列在某一直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
三個(gè)數(shù)成等比數(shù)列,其積為512,如果第一個(gè)數(shù)與第三個(gè)數(shù)各減2,則成等差數(shù)列,求這三個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等比數(shù)列的首項(xiàng)為,公比為(為正整數(shù)),且滿足是與的等差中項(xiàng);數(shù)列滿足().
(1)求數(shù)列的通項(xiàng)公式;
(2)試確定的值,使得數(shù)列為等差數(shù)列;
(3)當(dāng)為等差數(shù)列時(shí),對(duì)每個(gè)正整數(shù),在與之間插入個(gè)2,得到一個(gè)新數(shù)列. 設(shè)是數(shù)列 的前項(xiàng)和,試求滿足的所有正整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等差數(shù)列的前n項(xiàng)和為,且,.設(shè)數(shù)列前n項(xiàng)和為,且,求數(shù)列、的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知單調(diào)遞增的等比數(shù)列滿足:,且是的等差中項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2)若,,求使成立的正整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項(xiàng)的和為,點(diǎn)在函數(shù)的圖象上.
(1)求數(shù)列的通項(xiàng)公式及的最大值;
(2)令,求數(shù)列的前項(xiàng)的和;
(3)設(shè),數(shù)列的前項(xiàng)的和為,求使不等式對(duì)一切都成立的最大正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列{an}是等差數(shù)列,數(shù)列{bn}的前n項(xiàng)和Sn滿足且
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式:
(Ⅱ)設(shè)Tn為數(shù)列{Sn}的前n項(xiàng)和,求Tn.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com