【題目】已知 為兩條不同的直線, , 為兩個不同的平面,對于下列四個命題:

, ,

, ,

其中正確命題的個數(shù)有(

A. B. C. D.

【答案】A

【解析】, , , ,則可能相交,; ,則可能在平面內(nèi),;, ,則可能異面;, ,則可能異面,錯,故所有命題均不正確故選

【方法點晴】本題主要考查線面平行的判定與性質(zhì)、面面平行判定與性質(zhì),屬于中檔題. 空間直線、平面平行或垂直等位置關(guān)系命題的真假判斷,常采用畫圖(尤其是畫長方體)、現(xiàn)實實物判斷法(如墻角、桌面等)、排除篩選法等;另外,若原命題不太容易判斷真假,可以考慮它的逆否命題,判斷它的逆否命題真假,原命題與逆否命題等價.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(1)當時,求函數(shù)的值域;

(2)如果對任意的,不等式恒成立,求實數(shù)的取值范圍;

(3)是否存在實數(shù)使得函數(shù)的最大值為0,若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a1=1,an+1= (n∈N*).
(1)求證:{ + }是等比數(shù)列,并求{an}的通項公式an;
(2)數(shù)列{bn}滿足bn=(3n﹣1) an , 數(shù)列{bn}的前n項和為Tn , 若不等式(﹣1)nλ<Tn+ 對一切n∈N*恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校1800名學(xué)生在一次百米測試中,成績?nèi)拷橛?3秒與18秒之間,抽取其中50個樣本,將測試結(jié)果按如下方式分成五組:第一組,第二組,,第五組,下圖是按上述分組方法得到的頻率分布直方圖

(1)若成績小于15秒認為良好,求該樣本在這次百米測試中成績良好的人數(shù);

(2)請估計學(xué)校1800名學(xué)生中,成績屬于第四組的人數(shù);

(3)請根據(jù)頻率分布直方圖,求樣本數(shù)據(jù)的眾數(shù)和中位數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的首項a1=a(a>0),其前n項和為Sn , 設(shè)bn=an+an+1(n∈N*).
(1)若a2=a+1,a3=2a2 , 且數(shù)列{bn}是公差為3的等差數(shù)列,求S2n;
(2)設(shè)數(shù)列{bn}的前n項和為Tn , 滿足Tn=n2
①求數(shù)列{an}的通項公式;
②若對n∈N*,且n≥2,不等式(an﹣1)(an+1-1)≥2(1﹣n)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是平行四邊形,點, 分別為線段, , 的中點.

)證明平面;

)證明平面平面;

)在線段上找一點,使得平面,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角△ABC中,a、b、c分別為∠A、∠B、∠C所對的邊,且
(1)確定∠C的大;
(2)若c= ,求△ABC周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (其中)的周期為,且圖象上一個最低點為

(1)求的解析式;

(2)當時,求的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查某廠工人生產(chǎn)某種產(chǎn)品的能力,隨機抽查了20位工人某天生產(chǎn)該產(chǎn)品的數(shù)量.產(chǎn)品數(shù)量的分組區(qū)間為[45,55),[55,65),[65,75),[75,85),[85,95)由此得到頻率分布直方圖如圖.則產(chǎn)品數(shù)量位于[55,65)范圍內(nèi)的頻率為;這20名工人中一天生產(chǎn)該產(chǎn)品數(shù)量在[55,75)的人數(shù)是

查看答案和解析>>

同步練習(xí)冊答案