已知數(shù)列{an}中,a1=2,a2=8,數(shù)列{an-1-2an}是公比為2的等比數(shù)列,則下列判斷正確的是(  )
A、{an}是等差數(shù)列
B、{an}是等比數(shù)列
C、{
an
2n
}是等差數(shù)列
D、{
an
2n
}是等比數(shù)列
考點:等比數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:利用數(shù)列{an-1-2an}是公比為2的等比數(shù)列,可得an+1-2an=4•2n-1=2n+1,即
an+1
2n+1
-
an
2n
=1,從而數(shù)列{
an
2n
}是首項為1,公差為1的等差數(shù)列,即可得出結(jié)論.
解答: 解:(1)∵數(shù)列{an-1-2an}是公比為2的等比數(shù)列,a2-2a1=4
∴an+2-2an+1=2(an+1-2an),
∴an+1-2an=4•2n-1=2n+1
an+1
2n+1
-
an
2n
=1,又
a1
2
=1,
∴數(shù)列{
an
2n
}是首項為1,公差為1的等差數(shù)列,
故選:C.
點評:本題考查等比數(shù)列、等差數(shù)列的定義與通項,考查學生分析解決問題的能力,比較基礎(chǔ).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若實數(shù)x,y滿足約束條件
x≤4
y≥1
3x-y-6≥0
,則
y
x
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線y=k(x-m)(k,m∈R且k≠0)與圓x2+y2=1交于A,B兩點,記以O(shè)x為始邊(O為坐標原點),OA,OB為終邊的角分別為α,β,則|sin(α+β)|的值( 。
A、只與m有關(guān)
B、只與k有關(guān)
C、與m,k都有關(guān)
D、與m,k都無有關(guān)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列所給的函數(shù)中,定義域為[0,+∞)的是( 。
A、y=
1
x
B、y=x
1
2
C、y=3-x
D、y=lgx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=cos(2x-
3
)+2cos2x.
(1)求f(x)的對稱軸方程;
(2)已知△ABC中,角A,B,C的對邊分別為a,b,c,若f(
A
2
)=
1
2
,b+c=2,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在公差d≠0的等差數(shù)列{an}中,已知a1=-1,且a2,a4,a12三項成等比數(shù)列.求:
(1)數(shù)列{an}中的第10項a10的值;
(2)數(shù)列{an}的前20項和S20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,若a3+a4+…+a11+a12=5×35,求log3(a2+a13)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足
1
f(x+1)
=f(x),且f(x)=
1,-1<x≤0
-1,0<x≤1
,則f(f(
11
2
))=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U={x|x2>1},集合 A={x|x2-4x+3<0},則∁UA=( 。
A、(1,3)
B、(-∞,1)∪[3,+∞)
C、(-∞,-1)∪[3,+∞)
D、(-∞,-1)∪(3,+∞)

查看答案和解析>>

同步練習冊答案