已知半徑為2的圓柱面,一平面與圓柱面的軸線成45°角,則截線橢圓的焦距為
A.B.2C.4D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)P (4,4),圓C: 與橢圓E:的一個(gè)公共點(diǎn)為A(3,1),F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點(diǎn),直線與圓C相切。
(1)求m的值與橢圓E的方程;
(2)設(shè)D為直線PF1與圓C 的切點(diǎn),在橢圓E上是否存在點(diǎn)Q ,使△PDQ是以PD為底的等腰三角形?若存在,請指出共有幾個(gè)這樣的點(diǎn)?并說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共13分)如圖,有一塊半橢圓形鋼板,其半軸長為,短半軸長為,計(jì)劃將此鋼板切割成等腰梯形的形狀,下底是半橢圓的短軸,上底的端點(diǎn)在橢圓上,記,梯形面積為

(I)求面積為自變量的函數(shù)式,并寫出其定義域;
(II)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共14分)
已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,經(jīng)過點(diǎn)且離心率.過定點(diǎn)的直線與橢圓相交于兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)在軸上是否存在點(diǎn),使為常數(shù)?若存在,求出點(diǎn)的坐標(biāo);若不存
在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓+=1,過橢圓的右焦點(diǎn)的直線交橢圓于A、B兩點(diǎn),交y軸于P點(diǎn),設(shè)=λ1,=λ2,則λ1λ2的值為                                               
A.-           B.-             C.                D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

經(jīng)過橢圓=1(ab>0)的一個(gè)焦點(diǎn)和短軸端點(diǎn)的直線與原點(diǎn)的距離為,則該橢圓的離心率為
__________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知橢圓的中心是坐標(biāo)原點(diǎn),它的短軸長為,一個(gè)焦點(diǎn)為,一個(gè)定點(diǎn)為,且,過點(diǎn)的直線與橢圓相交于兩點(diǎn)。(1)求橢圓的方程和離心率;(2)若以為直徑的圓恰好過坐標(biāo)原點(diǎn),求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,則當(dāng)取得最小值時(shí),橢圓的離心率是
                 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓C:(a>b>0)的離心率為,過右焦點(diǎn)F且斜率為k(k>0)的直線于C相交于A、B兩點(diǎn),若。則k =
(A)1    (B)     (C)     (D)2

查看答案和解析>>

同步練習(xí)冊答案