【題目】已知拋物線(),直線與拋物線交于 (點在點的左側)兩點,且.
(1)求拋物線在兩點處的切線方程;
(2)若直線與拋物線交于兩點,且的中點在線段上, 的垂直平分線交軸于點,求面積的最大值.
【答案】(1) (2)
【解析】試題分析:(1)第(1)問,先求出拋物線的方程得到 ,再求導求出切線斜率,最后求出拋物線在兩點處的切線方程.(2)第(2)問,先利用弦長公式求出,再利用點到直線的距離求三角形的高,最后寫出面積的表達式,再換元利用導數求它的最大值.
試題解析:
(1)由,令,得,所以,解得, ,由,得,故所以在點的切線方程為,即,同理可得在點的切線方程為.
(2)由題意得直線的斜率存在且不為0,
故設, , ,由與聯(lián)立,
得, ,
所以, ,
故.
又,所以,所以,
由,得且.
因為的中點為,所以的垂直平分線方程為,令,得,即,所以點到直線的距離,
所以
.
令,則,則,故.
設,則,結合,令,得;
令,得,所以當,即時, .
科目:高中數學 來源: 題型:
【題目】某少數民族的刺繡有著悠久的歷史,如圖4①,②,③,④為她們刺繡最簡單的四個圖案,這些圖案都是由小正方形構成,小正方形數越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設第n個圖形包含f(n)個小正方形.
(1)求出f(5)的值;
(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關系式,并根據你得到的關系式求出f(n)的表達式;
(3)求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知從1開始的連續(xù)奇數蛇形排列形成寶塔形數表,第一行為1,第二行為3,5,第三行為7,9,11,第四行為13,15,17,19,…,如圖所示,在寶塔形數表中位于第行、第列的數記為,比如,,.若,則______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖所示的多面體中,平面平面,四邊形為邊長為2的菱形, 為直角梯形,四邊形為平行四邊形,且, , .
(1)若, 分別為, 的中點,求證: 平面;
(2)若, 與平面所成角的正弦值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】觀察下列等式
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49
…
照此規(guī)律,第n個等式為__________________________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
以平面直角坐標系的原點為極點, 軸的正半軸為極軸,且兩個坐標系取相等的長度單位.已知直線的參數方程為 (為參數),曲線的參數方程為 (為參數),曲線的極坐標方程為.
(1)求曲線和的公共點的極坐標;
(2)若為曲線上的一個動點,求到直線的距離的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】端午節(jié)吃粽子是我國的傳統(tǒng)習俗,設一盤中裝有個粽子,其中豆沙粽個,肉粽個,白粽個,這三種粽子的外觀完全相同,從中任意選取個.
()求三種粽子各取到個的概率.
()設表示取到的豆沙粽個數,求的分布列與數學期望.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com