19.集合P={x∈Z|y=$\sqrt{1-{x}^{2}}$},Q={y∈R|y=2cosx,x∈R},則P∩Q=( 。
A.[-1,1]B.{0,1}C.{-1,1}D.{-1,0,1}

分析 求出集合P,Q,然后求解交集即可.

解答 解:P={x∈Z|y=$\sqrt{1-{x}^{2}}$}={-1,0,1},Q={y∈R|y=2cosx,x∈R}=(-2,2),
則P∩Q={-1,0,1}.
故選:D.

點評 本題考查交集的運算,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合A={x|-2≤x<5},B={x|2<x≤7},則A∩B=( 。
A.{x|-2<x<5}B.{x|2<x<5}C.{x|2≤x≤7}D.{x|-2≤x≤7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)f(x)=ln(1+x)+mln(1-x)是偶函數(shù),則( 。
A.m=1,且f(x)在(0,1)上是增函數(shù)B.m=1,且f(x)在(0,1)上是減函數(shù)
C.m=-1,且f(x)在(0,1)上是增函數(shù)D.m=-1,且f(x)在(0,1)上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若函數(shù)$f(x)=\frac{ax+1}{x+2}$在區(qū)間(-2,+∞)上單調(diào)遞增,則a的取值范圍是(  )
A.a≤0B.$a>\frac{1}{2}$C.a≥0D.$a<\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.(1)計算:${({2\frac{1}{4}})^{\frac{1}{2}}}-{({-9.6})^0}-{({3\frac{3}{8}})^{-\frac{2}{3}}}+{({1.5})^{-2}}+lg25+lg4+{7^{{{log}_7}2}}$
(2)已知sinα-2cosα=0,求$\frac{{{{sin}^2}α+2{{cos}^2}α}}{sinα•cosα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在長方體ABCD-A1B1C1D1中,AA1=3,AD=4,AB=5,由A在表面到達C1的最短行程為( 。
A.12B.$\sqrt{74}$C.$\sqrt{80}$D.$3\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=(x-a)lnx,(a≥0).
(1)當a=0時,若直線y=2x+m與函數(shù)y=f(x)的圖象相切,求m的值;
(2)若f(x)在[1,2]上是單調(diào)減函數(shù),求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.若數(shù)列{bn}滿足:n∈N*,都有bn+2-bn=d(常數(shù)),則稱數(shù)列{bn}是公差為d的準等差數(shù)列.
(1)若cn=$\left\{\begin{array}{l}{4n-1當n為奇數(shù)時}\\{4n+9當n為偶數(shù)時}\end{array}\right.$,求準等差數(shù)列{cn}的公差,并求{cn}的前19項的和T19; 
(2)設(shè)數(shù)列{an}滿足:a1=a,對于n∈N*,都有an+an+1=2n
①求證:{an}為準等差數(shù)列,并求其通項公式;
②設(shè)數(shù)列{an}的前n項和為Sn,試研究:是否存在實數(shù)a,使得數(shù)列{Sn}有連續(xù)的兩項都等于50?若存在,請求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知直線(a-1)x-2y+4=0與x-ay-2=0平行,則a=2.

查看答案和解析>>

同步練習冊答案