【題目】某校高三4班有50名學(xué)生進(jìn)行了一場(chǎng)投籃測(cè)試,其中男生30人,女生20人.為了了解其投籃成績(jī),甲、乙兩人分別都對(duì)全班的學(xué)生進(jìn)行編號(hào)(1﹣50號(hào)),并以不同的方法進(jìn)行數(shù)據(jù)抽樣,其中一人用的是系統(tǒng)抽樣,另一人用的是分層抽樣.若此次投籃測(cè)試的成績(jī)大于或等于80分視為優(yōu)秀,小于80分視為不優(yōu)秀,如表是甲、乙兩人分別抽取的樣本數(shù)據(jù): 甲抽取的樣本數(shù)據(jù)
編號(hào) | 2 | 7 | 12 | 17 | 22 | 27 | 32 | 37 | 42 | 47 |
性別 | 男 | 女 | 男 | 男 | 女 | 男 | 女 | 男 | 女 | 女 |
投籃成 績(jī) | 90 | 60 | 75 | 80 | 83 | 85 | 75 | 80 | 70 | 60 |
乙抽取的樣本數(shù)據(jù)
編號(hào) | 1 | 8 | 10 | 20 | 23 | 28 | 33 | 35 | 43 | 48 |
性別 | 男 | 男 | 男 | 男 | 男 | 男 | 女 | 女 | 女 | 女 |
投籃成 績(jī) | 95 | 85 | 85 | 70 | 70 | 80 | 60 | 65 | 70 | 60 |
(Ⅰ)在乙抽取的樣本中任取3人,記投籃優(yōu)秀的學(xué)生人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
(Ⅱ)請(qǐng)你根據(jù)乙抽取的樣本數(shù)據(jù)完成下列2×2列聯(lián)表,判斷是否有95%以上的把握認(rèn)為投籃成績(jī)和性別有關(guān)?
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
男 | |||
女 | |||
合計(jì) | 10 |
(Ⅲ)判斷甲、乙各用何種抽樣方法,并根據(jù)(Ⅱ)的結(jié)論判斷哪種抽樣方法更優(yōu)?說(shuō)明理由.
下面的臨界值表供參考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(參考公式:K2= ,其中n=a+b+c+d)
【答案】解:(Ⅰ)在乙抽取的10個(gè)樣本中,投籃優(yōu)秀的學(xué)生人數(shù)為4, ∴X的取值為0,1,2,3.
分布列為:
X | 0 | 1 | 2 | 3 |
P |
(Ⅱ)設(shè)投籃成績(jī)與性別無(wú)關(guān),由乙抽取的樣本數(shù)據(jù),得2×2列聯(lián)表如下:
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
男 | 4 | 2 | 6 |
女 | 0 | 4 | 4 |
合計(jì) | 4 | 6 | 10 |
K2= ≈4.444>3.841,
所以有95%以上的把握認(rèn)為投籃成績(jī)與性別有關(guān).
(Ⅲ)甲用的是系統(tǒng)抽樣,乙用的是分層抽樣.
由(Ⅱ)的結(jié)論知,投籃成績(jī)與性別有關(guān),并且從樣本數(shù)據(jù)能看出投籃成績(jī)與性別有明顯差異,因此采用分層抽樣方法比系統(tǒng)抽樣方法更優(yōu).
【解析】(Ⅰ)在乙抽取的10個(gè)樣本中,投籃優(yōu)秀的學(xué)生人數(shù)為4,X的取值為0,1,2,3. ,即可求X的分布列和數(shù)學(xué)期望.(Ⅱ)寫(xiě)出2×2列聯(lián)表,求出K2 , 與臨界值比較,即可得出結(jié)論;(Ⅲ)利用分層抽樣方法比系統(tǒng)抽樣方法的定義,可得結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有4名男生,3名女生排成一排:
(1)從中選出3人排成一排,有多少種排法?
(2)若男生甲不站排頭,女生乙不站在排尾,則有多少種不同的排法?
(3)要求女生必須站在一起,則有多少種不同的排法?
(4)若3名女生互不相鄰,則有多少種不同的排法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將自然數(shù)按如下規(guī)則“放置”在平面直角坐標(biāo)系中,使其滿足條件:①每個(gè)自然數(shù)“放置”在一個(gè)“整點(diǎn)”(橫縱坐標(biāo)均為整數(shù)的點(diǎn))上;②0在原點(diǎn),1在(0,1)點(diǎn),2在(1,1)點(diǎn),3在(1,0)點(diǎn),4在(1,﹣1)點(diǎn),5在(0,﹣1)點(diǎn),…,即所有自然數(shù)按順時(shí)針“纏繞”在以“0”為中心的“樁”上,則放置數(shù)字(2n+1)2 , n∈N*的整點(diǎn)坐標(biāo)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某次測(cè)驗(yàn)中,有6位同學(xué)的平均成績(jī)?yōu)?5分.用xn表示編號(hào)為n(n=1,2,…,6)的同學(xué)所得成績(jī),且前5位同學(xué)的成績(jī)?nèi)缦拢?
編號(hào)n | 1 | 2 | 3 | 4 | 5 |
成績(jī)xn | 70 | 76 | 72 | 70 | 72 |
(1)求第6位同學(xué)的成績(jī)x6 , 及這6位同學(xué)成績(jī)的標(biāo)準(zhǔn)差s;
(2)從前5位同學(xué)中,隨機(jī)地選2位同學(xué),求恰有1位同學(xué)成績(jī)?cè)趨^(qū)間(68,75)中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若不等式ax2+5x﹣2>0的解集是{x| <x<2},
(1)求a的值;
(2)求不等式ax2+5x+a2﹣1>0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓和直線: ,橢圓的離心率,坐標(biāo)原點(diǎn)到直線的距離為.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知定點(diǎn),若直線過(guò)點(diǎn)且與橢圓相交于兩點(diǎn),試判斷是否存在直線,使以為直徑的圓過(guò)點(diǎn)?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)椋?,+∞)的函數(shù)f(x)滿足:(1)對(duì)任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)當(dāng)x∈(1,2]時(shí),f(x)=2﹣x. 給出如下結(jié)論:
①對(duì)任意m∈Z,有f(2m)=0;
②函數(shù)f(x)的值域?yàn)閇0,+∞);
③存在n∈Z,使得f(2n+1)=9;
正確的有( )
A.①②③
B.①②
C.①③
D.②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小學(xué)為了解本校某年級(jí)女生的身高情況,從本校該年級(jí)的學(xué)生中隨機(jī)選出100名女生并統(tǒng)計(jì)她們的身高(單位: ),得到下面的頻數(shù)分布表:
(1)用分層抽樣的方法從身高在和的女生中共抽取6人,則身高在的女生應(yīng)抽取幾人?
(2)在(1)中抽取的6人中,再隨機(jī)抽取2人,求這2人身高都在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,ABCD是菱形,PA⊥平面ABCD
(1)求證:BD⊥PC;
(2)若平面PBC與平面PAD的交線為l,求證:BC∥l.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com