【題目】在邊長為4的正方形ABCD的邊上有動(dòng)點(diǎn)P,動(dòng)點(diǎn)P從B點(diǎn)開始沿折線BCDA運(yùn)動(dòng)到A終止,設(shè)P點(diǎn)移動(dòng)的距離為x,的面積為S.
(1)求函數(shù)S=f(x)的解析式、定義域,畫出函數(shù)圖像;
(2)求函數(shù)S=f(x)的值域.
【答案】(1);
(2)值域?yàn)?/span>
【解析】
(1)分三類情況討論,0<x≤2, 2<x≤4, 4<x≤6,分別求出S,再把S表示成分段函數(shù)的形式,進(jìn)而畫出函數(shù)的圖象;
(2)結(jié)合圖象得到函數(shù)的值域.
(1)①當(dāng)點(diǎn)P在線段BC上運(yùn)動(dòng)時(shí),點(diǎn)P到AB的距離為x,則y=×4×x=2x(0<x<4),其函數(shù)圖象為過原點(diǎn)的一線段;
②點(diǎn)P在邊CD上時(shí),點(diǎn)P到AB的距離不變,為4,則y=×4×4=8(4≤x≤8),其函數(shù)圖象是平行于x軸的一線段;
③點(diǎn)P在邊DA上時(shí),點(diǎn)P到AB的距離為(12﹣x),則y=×4×(12﹣x)=24﹣2x(8<x<12),其圖象是一線段.
∴,其定義域?yàn)椋海?,12)
其圖象為:
(2)結(jié)合圖象可知,函數(shù)S=f(x)的值域值域?yàn)?/span>
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過隨機(jī)詢問110名性別不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:
男 | 女 | 總計(jì) | |
愛好 | 40 | 20 | 60 |
不愛好 | 20 | 30 | 50 |
總計(jì) | 60 | 50 | 110 |
由 算得, .
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
參照附表,得到的正確結(jié)論是( )
A.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
C.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 +y2=1,A,B,C,D為橢圓上四個(gè)動(dòng)點(diǎn),且AC,BD相交于原點(diǎn)O,設(shè)A(x1 , y1),B(x2 , y2)滿足 = .
(1)求證: + = ;
(2)kAB+kBC的值是否為定值,若是,請求出此定值,并求出四邊形ABCD面積的最大值,否則,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了得到函數(shù)y=sin2x的圖象,只需把函數(shù)y=sin(2x﹣ )的圖象( )
A.向左平移 個(gè)單位長度
B.向右平移 個(gè)單位長度
C.向左平移 個(gè)單位長度
D.向右平移 個(gè)單位長度
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在 中, 所對的邊分別為,且.
(1)求角的大小;
(2)若, , 為的中點(diǎn),求的長.
【答案】(1);(2).
【解析】試題分析:(1)由已知,利用正弦定理可得a2=b2+c2-2b,再利用余弦定理即可得出cosA,結(jié)合A的范圍即可得解A的值.
(2)△ABC中,先由正弦定理求得AC的值,再由余弦定理求得AB的值,△ABD中,由余弦定理求得BD的值.
試題解析:
(1)因?yàn)?/span>asin A=(b-c)sin B+(c-b)·sin C,
由正弦定理得a2=(b-c)b+(c-b)c,
整理得a2=
由余弦定理得cos A===,
因?yàn)?/span>A∈(0,π),所以A=.
(2)由cos B=,得sin B===,
所以cos C=cos[π-(A+B)]=-cos(A+B)=-=-,
由正弦定理得b===2,
所以CD=AC=1,
在△BCD中,由余弦定理得BD2=()2+12-2×1××=13,
所以BD=.
【題型】解答題
【結(jié)束】
21
【題目】已知函數(shù)在處的切線經(jīng)過點(diǎn)
(1)討論函數(shù)的單調(diào)性;
(2)若不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),證明: 為偶函數(shù);
(2)若在上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(3)若,求實(shí)數(shù)的取值范圍,使在上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)給出下列四個(gè)命題:
①c = 0時(shí),是奇函數(shù); ②時(shí),方程只有一個(gè)實(shí)根;
③的圖象關(guān)于點(diǎn)(0 , c)對稱; ④方程至多3個(gè)實(shí)根.
其中正確的命題個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在海岸A處,發(fā)現(xiàn)南偏東45°方向距A為(2-2)海里的B處有一艘走私船,在A處正北方向,距A為海里的C處的緝私船立即奉命以10海里/時(shí)的速度追截走私船.
(1)剛發(fā)現(xiàn)走私船時(shí),求兩船的距離;
(2)若走私船正以10海里/時(shí)的速度從B處向南偏東75°方向逃竄,問緝私船沿什么方向能最快追上走私船?并求出所需要的時(shí)間(精確到分鐘,參考數(shù)據(jù):≈1.4,≈2.5).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求使下列函數(shù)取得最大值、最小值的自變量x的集合,并分別寫出最大值、最小值:
(1)y=3-2sin x;
(2)y=sin.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com