【題目】已知長方形, , .以的中點(diǎn)為原點(diǎn)建立如圖所示的平面直角坐標(biāo)系.

(1)求以、為焦點(diǎn),且過、兩點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;

(2)過點(diǎn)的直線交(1)中橢圓于、兩點(diǎn),是否存在直線,使得弦為直徑的圓恰好過原點(diǎn)?若存在,求出直線的方程;若不存在,說明理由.

【答案】(1) ;(2) 存在過的直線 使得以弦為直徑的圓恰好過原點(diǎn).

【解析】試題分析:(1橢圓的標(biāo)準(zhǔn)方程是;(2)設(shè)直線 ,聯(lián)立方程: ,得到韋達(dá)定理,以為直徑的圓恰好過原點(diǎn),則,所以,代入韋達(dá)定理即可解出答案。

試題解析:

(1)由題意可得點(diǎn), , 的坐標(biāo)分別為,

設(shè)橢圓的標(biāo)準(zhǔn)方程是

,∴

∴橢圓的標(biāo)準(zhǔn)方程是

(2)由題意直線的斜率存在,可設(shè)直線的方程為

設(shè), 兩點(diǎn)的坐標(biāo)分別為, ,聯(lián)立方程:

消去整理得, ,

若以為直徑的圓恰好過原點(diǎn),則,所以

所以,即

所以,

所以直線的方程為,或

所以存在過的直線 使得以弦為直徑的圓恰好過原點(diǎn)。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,AB⊥平面BCP,CD∥平面ABP,AB=BC=CP=BP=2CD=2
(1)證明:平面ABP⊥平面ADP;
(2)若直線PA與平面PCD所成角為α,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近幾年,京津冀等地?cái)?shù)城市指數(shù)“爆表”,尤其2015年污染最重.為了探究車流量與的濃度是否相關(guān),現(xiàn)采集到北方某城市2015年12月份某星期星期一到星期日某一時(shí)間段車流量與的數(shù)據(jù)如表:

時(shí)間

星期一

星期二

星期三

星期四

星期五

星期六

星期七

車流量(萬輛)

1

2

3

4

5

6

7

的濃度(微克/立方米)

28

30

35

41

49

56

62

1)由散點(diǎn)圖知具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;

2)(。├茫1)所求的回歸方程,預(yù)測該市車流量為8萬輛時(shí)的濃度;

)規(guī)定:當(dāng)一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級為優(yōu);當(dāng)一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級為良.為使該市某日空氣質(zhì)量為優(yōu)或者為良,則應(yīng)控制當(dāng)天車流量在多少萬輛以內(nèi)?(結(jié)果以萬輛為單位,保留整數(shù).)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C1的極坐標(biāo)方程為ρ=2sinθ,正方形ABCD的頂點(diǎn)都在C1上,且依次按逆時(shí)針方向排列,點(diǎn)A的極坐標(biāo)為( , ).
(1)求點(diǎn)C的直角坐標(biāo);
(2)若點(diǎn)P在曲線C2:x2+y2=4上運(yùn)動(dòng),求|PB|2+|PC|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:(1)存在實(shí)數(shù)x,使; (2)是銳角的內(nèi)角,則>; (3)函數(shù)y=sin( -)是偶函數(shù); (4)函數(shù)y=sin2的圖象向右平移個(gè)單位,得到y=sin(2+)的圖象.其中正確的命題的序號是____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的可導(dǎo)函數(shù)f(x),其導(dǎo)函數(shù)記為f'(x),滿足f(x)+f(2﹣x)=(x﹣1)2 , 且當(dāng)x≤1時(shí),恒有f'(x)+2<x.若 ,則實(shí)數(shù)m的取值范圍是(
A.(﹣∞,1]
B.
C.[1,+∞)
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知M是正四面體ABCD棱AB的中點(diǎn),N是棱CD上異于端點(diǎn)C,D的任一點(diǎn),則下列結(jié)論中,正確的個(gè)數(shù)有( 。

1MN⊥AB;

(2)若N為中點(diǎn),則MN與AD所成角為60°;

(3)平面CDM平面ABN;

(4)不存在點(diǎn)N,使得過MN的平面與AC垂直.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正四棱錐P﹣ABCD中,底面ABCD的邊長為4,PD=4,E為PA的中點(diǎn),

(1)求證:平面EBD⊥平面PAC;
(2)求直線BE與平面PBD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)水輪的半徑為4米,水輪圓心距離水面2米,已知水輪每分鐘逆時(shí)針轉(zhuǎn)動(dòng)4圈,如果當(dāng)水輪上點(diǎn)從水中浮現(xiàn)(圖中點(diǎn))開始計(jì)算時(shí)間.

(1)將點(diǎn)距離水面的高度(米)表示為時(shí)間(秒)的函數(shù);

(2)在水輪旋轉(zhuǎn)一圈內(nèi),有多長時(shí)間點(diǎn)離開水面?

查看答案和解析>>

同步練習(xí)冊答案