【題目】以坐標原點為極點,x軸的正半軸為極軸的極坐標系中,曲線C1的極坐標方程為ρ=2sinθ,正方形ABCD的頂點都在C1上,且依次按逆時針方向排列,點A的極坐標為( , ).
(1)求點C的直角坐標;
(2)若點P在曲線C2:x2+y2=4上運動,求|PB|2+|PC|2的取值范圍.

【答案】
(1)解:∵點A的極坐標為( , ),

∴點A的直角坐標是(1,1),

由A,C關于y軸對稱,則C(﹣1,1)


(2)解:易得B(0,2),C(﹣1,1),

曲線C1:ρ=2sinθ的直角坐標方程是:x2+(y﹣1)2=1,

設P(x,y),x=2cosθ,y=2sinθ,

則|PB|2+|PC|2

=x2+(y﹣2)2+(x+1)2+(y﹣1)2

=2x2+2y2﹣6y+2x+6

=14+2(x﹣3y)

=14+2(2cosθ﹣6sinθ)

=14+4(cosθ﹣3sinθ)

=14+4 cos(θ+φ),

故|PB|2+|PC|2∈[14﹣4 ,14+4 ]


【解析】(1)求出A的直角坐標,根據(jù)A,C關于y軸對稱,求出C的坐標即可;(2)設P(x,y),x=2cosθ,y=2sinθ,求出|PB|2+|PC|2的解析式,根據(jù)三角函數(shù)的性質(zhì)求出其范圍即可.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是(  )

A. 甲、乙二人比賽,甲勝的概率為則比賽5場,甲勝3

B. 某醫(yī)院治療一種疾病的治愈率為10%,前9個病人沒有治愈,則第10個病人一定治愈

C. 隨機試驗的頻率與概率相等

D. 天氣預報中,預報明天降水概率為90%,是指降水的可能性是90%

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某次考試中,從甲乙兩個班各抽取10名學生的數(shù)學成績進行統(tǒng)計分析,兩個班成績的莖葉圖如圖所示.

(Ⅰ)求甲班的平均分;

從甲班和乙班成績90100的學生中抽取兩人,求至少含有甲班一名同學的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有下列四個命題:

, 互為相反數(shù)的逆命題;

②“若兩個三角形全等,則兩個三角形的面積相等的否命題;

,有實根的逆否命題;

不是等邊三角形,則的三個內(nèi)角相等逆命題;

其中真命題為( )

A. ①② B. ②③ C. ①③ D. ③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如表資料:

日 期

1月10日

2月10日

3月10日

4月10日

5月10日

6月10日

晝夜溫差x(°C)

10

11

13

12

8

6

就診人數(shù)y(個)

22

25

29

26

16

12

該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.

(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;

(2)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出關于的線性回歸方程

(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問(2)中所得線性回歸方程是否理想?

參考公式:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點是函數(shù) (),)的圖象上一點,等比數(shù)列的前項和為,數(shù)列 ()的首項為,且前項和滿足: ().

(1).求數(shù)列的通項公式;

(2).若數(shù)列的通項求數(shù)列的前項和;

(3).若數(shù)列項和為,試問的最小正整數(shù)是多少.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知長方形 , .以的中點為原點建立如圖所示的平面直角坐標系.

(1)求以為焦點,且過兩點的橢圓的標準方程;

(2)過點的直線交(1)中橢圓于兩點,是否存在直線,使得弦為直徑的圓恰好過原點?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1的棱長為a,若E為棱AB的中點,

求四棱錐B1﹣BCDE的體積

求證:面B1DC⊥面B1DE

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|+m|x+a|.
(1)當m=a=﹣1時,求不等式f(x)≥x的解集;
(2)不等式f(x)≥2(0<m<1)恒成立時,實數(shù)a的取值范圍是{a|a≤﹣3或a≥3},求實數(shù)m的集合.

查看答案和解析>>

同步練習冊答案