【題目】已知函數(shù).
(1)求的最小正周期;
(2)當(dāng)時,
(ⅰ)求函數(shù)的單調(diào)遞減區(qū)間;
(ⅱ)求函數(shù)的最大值最小值,并分別求出使該函數(shù)取得最大值最小值時的自變量的值.
【答案】(1)最小正周期為(2)(ⅰ) 單調(diào)遞減區(qū)間為.(ⅱ) 時,取最大值為2, 當(dāng)時,取最小值為.
【解析】
(1)根據(jù)降冪公式與輔助角公式化簡得再求解即可.
(2)(i)求解可得,再根據(jù)正弦函數(shù)的圖像與單調(diào)區(qū)間求解即可.
(ii)根據(jù)(i)中所得的單調(diào)區(qū)間求解最值即可.
(1)由題意可知:
.
因為,所以的最小正周期為.
(2)(ⅰ)因為,所以,
因為,的單調(diào)遞減區(qū)間是,
且由,得,
所以的單調(diào)遞減區(qū)間為.
(ⅱ)由(ⅰ)可知當(dāng)時,單調(diào)遞增,
當(dāng)時,單調(diào)遞減,
且,,
所以:當(dāng)時,取最大值為2,
當(dāng)時,取最小值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,既是偶函數(shù),又在區(qū)間(0,+∞)上單調(diào)遞減的函數(shù)是( )
A.y=x2B.C.y=2|x|D.y=cosx
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)設(shè),f(x)的最小值是,最大值是3,求實數(shù)m,n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), .
(1)當(dāng)時,求函數(shù)的極小值;
(2)討論函數(shù)零點的個數(shù);
(3)若對任意的, 恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點在橢圓: 上, 是橢圓的一個焦點.
(Ⅰ)求橢圓的方程;
(Ⅱ)橢圓C上不與點重合的兩點, 關(guān)于原點O對稱,直線, 分別交軸于, 兩點.求證:以為直徑的圓被直線截得的弦長是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,且),且.
(1)求實數(shù)的值;
(2)判斷函數(shù)的奇偶性并證明
(3)若函數(shù)有零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進行理財投資,根據(jù)長期收益率市場預(yù)測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,且投資1萬元時的收益為萬元,投資股票等風(fēng)險型產(chǎn)品的收益與投資額的算術(shù)平方根成正比,且投資1萬元時的收益為0.5萬元,
(1)分別寫出兩種產(chǎn)品的收益與投資額的函數(shù)關(guān)系;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,問:怎樣分配資金能使投資獲得最大收益,其最大收益為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:
①集合{x∈N|x3=x}用列舉法表示為{-1,0,1};
②實數(shù)集可以表示為{x|x為所有實數(shù)}或{R};
③方程組的解集為{x=1,y=2}.
其中正確的有( )
A.3個B.2個
C.1個D.0個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“五點法”畫函數(shù)在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如下表:
0 | |||||
0 | 2 | 0 | 0 |
(1)請將上表數(shù)據(jù)補充完整,填寫在相應(yīng)位置,并求出函數(shù)的解析式;
(2)把的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再把得到的圖象向左平移個單位長度,得到函數(shù)的圖象,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com