一個幾何體的三視圖如圖所示,則幾何體的體積是( 。
A、
5
6
B、
10
3
C、
5
3
D、2
考點:由三視圖求面積、體積
專題:計算題,空間位置關系與距離
分析:幾何體為長方體消去一個三棱錐,結合直觀圖判斷長方體的長、寬、高,消去的三棱錐的高與底面三角形的相關幾何量的數(shù)據(jù),把數(shù)據(jù)代入長方體與棱錐的體積公式計算.
解答: 解:由三視圖知:幾何體為長方體消去一個三棱錐,如圖:

長方體的長、寬、高分別為2、
2
、
2
,長方體的體積為2×
2
×
2
=4,
消去是三棱錐的體積為
1
3
×
1
2
×
2
×
2
=
2
3
,
∴幾何體的體積V=4-
2
3
=
10
3

故選:B.
點評:本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的形狀及數(shù)據(jù)所對應的幾何量是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

記函數(shù)f(x)=log
1
2
x的反函數(shù)為g(x),則函數(shù)y=g(x)在區(qū)間[1,2]的值域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若曲線f(x)=x3-2ax2+2ax上任意一點處的切線的傾斜角都是銳角,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓P:x2+y2=4y及拋物線S:x2=8y,過圓心P作直線l,此直線與上述兩曲線的四個交點,自左向右順次記為A,B,C,D,如果線段AB,BC,CD的長按此順序構成一個等差數(shù)列,則直線l的斜率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=sin(2x-
π
4
)在區(qū)間[0,
π
2
]上的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設z=x+y,其中實數(shù)x,y滿足
x+2y≥0
x-y≤0
0≤y≤6
,則z的最大值為(  )
A、6B、12C、0D、-6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合A={0,2,3,4},集合B={-2,1,2,7},則A∩B=( 。
A、∅
B、{2}
C、{-2,2}
D、{-2,0,1,2,3,4,7}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:?x0∈R,x02+x0+1<0;q:?x∈[1,2],x2-1≥0.以下命題為真命題的是(  )
A、¬p∧(¬q)
B、¬p∧q
C、p∧(¬q)
D、p∧q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x,y滿足約束條件
x≥2
3x-y≥1
y≥x+1
,若目標函數(shù)z=ax+by(a>0,b>0)的最小值為2,則4a+8b的最小值為( 。
A、2
B、2
2
C、4
D、4
2

查看答案和解析>>

同步練習冊答案