【題目】已知A、B、C為三個銳角,且A+B+C=π,若向量 =(2sinA﹣2,cosA+sinA)與向量 =(cosA﹣sinA,1+sinA)是共線向量. (Ⅰ)求角A;
(Ⅱ)求函數(shù)y=2sin2B+cos 的最大值.

【答案】解:①∵ =(sinA﹣cosA,1+sinA),且 共線, 可得(2﹣2sinA)(1+sinA)﹣(sinA﹣cosA)(cosA+sinA)=0,化簡可得sinA=±
又△ABC是銳角三角形,∴sinA=
②由A= 得B+C= ,即C= ﹣B,
y=2sin2B+cos
=1﹣cos2B+cos sin2B
=1+sin2Bcos
,∴ ,∴ <2B<π,∴ ,
.故
因此函數(shù)y=2sin2B+cos 的值域為( ,2],故函數(shù)y的最大值等于2
【解析】(1)由已知 ,利用向量共線的條件及A為銳角整理可得,sinA= ,從而可求角A的值.(2)結(jié)合(1)中的條件可把所求函數(shù)式化簡得, ,利用輔助角公式可得y=sin(2B﹣ )+1,結(jié)合題中銳角三角形的條件可求B的范圍,進(jìn)而求出函數(shù)的值域,從而得到函數(shù)的最大值.
【考點精析】利用兩角和與差的正弦公式和二倍角的余弦公式對題目進(jìn)行判斷即可得到答案,需要熟知兩角和與差的正弦公式:;二倍角的余弦公式:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以邊長為的正三角形的頂點為坐標(biāo)原點,另外兩個頂點在拋物線過拋物線的焦點的直線過交拋物線兩點.

1)求拋物線的方程;

2求證 為定值;

3)求線段的中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個幾何體的三視圖如圖所示(單位:m),求該幾何體的體積和表面積.(V圓錐體= Sh,V圓柱體=Sh)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】不等式ax2+bx+c>0的解集為{x|x<1或x>3},則不等式cx2﹣bx+a<0的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位建造一間背面靠墻的小房,地面面積為12m2 , 房屋正面每平方米造價為1200元,房屋側(cè)面每平方米造價為800元,屋頂?shù)脑靸r為5800元,如果墻高為3m,且不計房屋背面和地面的費(fèi)用,設(shè)房屋正面地面的邊長為xm,房屋的總造價為y元.
(1)求y用x表示的函數(shù)關(guān)系式;
(2)怎樣設(shè)計房屋能使總造價最低?最低總造價是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)O為坐標(biāo)原點,曲線x2+y2+2x﹣6y+1=0上有兩點P、Q,滿足關(guān)于直線x+my+4=0對稱,又滿足 =0.
(1)求m的值;
(2)求直線PQ的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時,求的單調(diào)區(qū)間;

2)令,區(qū)間 為自然對數(shù)的底數(shù)。

)若函數(shù)在區(qū)間上有兩個極值,求實數(shù)的取值范圍;

)設(shè)函數(shù)在區(qū)間上的兩個極值分別為,

求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A(0,﹣2),橢圓E: =1(a>b>0)的離心率為 ,F(xiàn)是橢圓的焦點,直線AF的斜率為 ,O為坐標(biāo)原點.
(1)求E的方程;
(2)設(shè)過點A的直線l與E相交于P,Q兩點,當(dāng)△OPQ的面積最大時,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下三個關(guān)于圓錐曲線的命題中:
①設(shè)A,B為兩個定點,K為非零常數(shù),若|PA|﹣|PB|=K,則動點P的軌跡是雙曲線.
②方程2x2﹣5x+2=0的兩根可分別作為橢圓和雙曲線的離心率
③雙曲線 與橢圓 +y2=1有相同的焦點.
④已知拋物線y2=2px,以過焦點的一條弦AB為直徑作圓,則此圓與準(zhǔn)線相切
其中真命題為(寫出所以真命題的序號)

查看答案和解析>>

同步練習(xí)冊答案