5.計(jì)算:
(1)${({\frac{25}{9}})^{\frac{1}{2}}}+{3^0}-{({\frac{3}{4}})^{-1}}$
(2)$\frac{1}{2}lg25+lg2-lg10-{log_2}9•{log_3}$2.

分析 (1)利用有理指數(shù)冪的運(yùn)算法則化簡(jiǎn)求解即可.
(2)利用對(duì)數(shù)運(yùn)算法則化簡(jiǎn)求解即可.

解答 (本小題12分)
解:(1)原式=$\frac{5}{3}+1-\frac{4}{3}$…(3分)
=$\frac{4}{3}$…(6分)
(2)原式=$lg\sqrt{25}+lg2-1-{log_2}{3^2}•{log_3}2$…(9分)
=lg5+lg2-1-2log23•log32…(10分)
=lg10-1-2…(11分)
=-2…(12分)

點(diǎn)評(píng) 本題考查有理指數(shù)冪以及對(duì)數(shù)運(yùn)算法則的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,$\frac{sinA}{a}$=$\frac{\sqrt{3}cosB}$.
(Ⅰ)求角B;
(Ⅱ)求sinAcosC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.甲、乙兩人參加數(shù)學(xué)競(jìng)賽培訓(xùn),現(xiàn)分別從他們?cè)谂嘤?xùn)期間參加的若干次預(yù)賽成績(jī)中隨機(jī)抽取8次,畫出莖葉圖如圖所示,乙的成績(jī)中有一個(gè)數(shù)個(gè)位數(shù)字模糊,在莖葉圖中用c表示.(把頻率當(dāng)作概率)
(Ⅰ)假設(shè)c=5,現(xiàn)要從甲,乙兩人中選派一人參加數(shù)學(xué)競(jìng)賽,從統(tǒng)計(jì)學(xué)的角度,你認(rèn)為派哪位學(xué)生參加比較合適?
(Ⅱ)假設(shè)數(shù)字c的取值是隨機(jī)的,求乙的平均分高于甲的平均分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)y=loga(x+1)+2(a>0且a≠1)恒過(guò)定點(diǎn)A,則A的坐標(biāo)為(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在△ABC中,已知角$C=\frac{π}{3}$,a2+b2=4(a+b)-8,則邊c=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.曲線y=x4在x=1處的切線方程為( 。
A.4x-y-3=0B.x+4y-5=0C.4x-y+3=0D.x+4y+3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知全集U={1,2,3,4,5,6},A={1,3,5},B={2,3,4},則(∁UA)∩B=( 。
A.{2,4}B.{3}C.{2,4,6}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知向量$\overrightarrow{a}$=(sin$\frac{x}{2}$,$\frac{1}{2}$),$\overrightarrow$=($\sqrt{3}$cos$\frac{x}{2}$-sin$\frac{x}{2}$,1),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c.
(1)求f(x)的單調(diào)遞增區(qū)間:
(2)若f(B+C)=1,a=$\sqrt{3}$,b=1.求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某公司生產(chǎn)一批A產(chǎn)品需要原材料500噸,每噸原材料可創(chuàng)造利潤(rùn)12萬(wàn)元.該公司通過(guò)設(shè)備升級(jí),生產(chǎn)這批A產(chǎn)品所需原材料減少了x噸,且每噸原材料創(chuàng)造的利潤(rùn)提高0.5x%;若將少用的x噸原材料全部用于生產(chǎn)公司新開(kāi)發(fā)的B產(chǎn)品,每噸原材料創(chuàng)造的利潤(rùn)為12(a-$\frac{13}{1000}$x)萬(wàn)元(a>0).
(Ⅰ)若設(shè)備升級(jí)后生產(chǎn)這批A產(chǎn)品的利潤(rùn)不低于原來(lái)生產(chǎn)該批A產(chǎn)品的利潤(rùn),求x的取值范圍.
(Ⅱ)若生產(chǎn)這批B產(chǎn)品的利潤(rùn)始終不高于設(shè)備升級(jí)后生產(chǎn)這批A產(chǎn)品的利潤(rùn),求a的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案