【題目】已知圓上一點關于直線的對稱點仍在圓上,直線截得圓的弦長為.
(1)求圓的方程;
(2)設是直線上的動點,是圓的兩條切線,為切點,求四邊形面積的最小值.
【答案】(1);(2)4.
【解析】
(1)根據(jù)對稱性判斷出圓心在直線上,由此設出圓心坐標,利用弦長列方程,解方程求得圓心坐標,進而求得圓的半徑,從而求得圓的方程.
(2)根據(jù)圓的切線的幾何性質,判斷出四邊形面積最小時,垂直于直線,根據(jù)點到直線的距離公式求得的最小值,進而求得四邊形面積的最小值.
(1)由于圓上一點關于直線的對稱點仍在圓上,所以圓心在直線上,設圓心的坐標為,半徑,依題意直線截得圓的弦長(其中是圓心到直線的距離,即.)所以,即,解得,所以圓心,.所以圓的方程為.
(2),而,所以當最小時,最小,從而最小.的最小值為圓心到直線的距離,即,此時,也即的最小值為,所以四邊形面積的最小值為.
科目:高中數(shù)學 來源: 題型:
【題目】如圖是一幾何體的平面展開圖,其中為正方形,分別為的中點,在此幾何體中,給出下面四個結論:①直線與直線異面;②直線與直線異面;③直線平面;④平面平面;其中正確的是_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,曲線過點,其參數(shù)方程為 (為參數(shù),),以為極點,軸非負半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)求已知曲線和曲線交于,兩點,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知復數(shù),是實數(shù),是虛數(shù)單位.
(1)求復數(shù);
(2)若復數(shù)所表示的點在第一象限,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率為,以短軸端點和焦點為頂點的四邊形的周長為.
(Ⅰ)求橢圓的標準方程及焦點坐標.
(Ⅱ)過橢圓的右焦點作軸的垂線,交橢圓于、兩點,過橢圓上不同于點、的任意一點,作直線、分別交軸于、兩點.證明:點、的橫坐標之積為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P—ABCD中,四邊形ABCD是矩形,平面PCD⊥平面ABCD,M為PC中點.求證:
(1)PA∥平面MDB;
(2)PD⊥BC.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】過拋物線 的焦點的直線與拋物線在第一象限的交點為,與拋物線準線的交點為 ,點在拋物線準線上的射影為,若 的面積為 .
( 1 ) 求拋物線的標準方程;
( 2 ) 過焦點的直線與拋物線交于兩點,拋物線在點處的切線分別為,且與相交于點,與軸交于點,求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com