【題目】已知?jiǎng)狱c(diǎn)到定點(diǎn)的距離比它到軸的距離大.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)點(diǎn)(為常數(shù)),過點(diǎn)作斜率分別為的兩條直線與,交曲線于兩點(diǎn),交曲線于兩點(diǎn),點(diǎn)分別是線段的中點(diǎn),若,求證:直線過定點(diǎn).
【答案】(1)(2)見解析
【解析】
(1)由題意可得,點(diǎn)到定點(diǎn)的距離等于它到的距離,從而點(diǎn)的軌跡是以為焦點(diǎn),為準(zhǔn)線的拋物線,從而求出答案;
(2)先寫出直線的點(diǎn)斜式方程,再聯(lián)立拋物線方程消元,得韋達(dá)定理結(jié)論,利用中點(diǎn)坐標(biāo)公式求出點(diǎn),同理求出點(diǎn),從而求出直線直線的斜率及直線方程,從而得出直線過定點(diǎn).
解:(1)∵點(diǎn)到定點(diǎn)的距離比它到軸的距離大1,
∴點(diǎn)到定點(diǎn)的距離等于它到的距離,
∴點(diǎn)的軌跡是以為焦點(diǎn),為準(zhǔn)線的拋物線,
∴動(dòng)點(diǎn)的軌跡的方程為
(2)由題意,直線的方程為,
設(shè),由,得,
∴,
又線段的中點(diǎn)為,所以,同理,
∴直線的斜率,
∴直線的方程為:,
即,
∴直線過定點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是矩形,平面,,點(diǎn)、分別在線段、上,且,其中,連接,延長與的延長線交于點(diǎn),連接.
(Ⅰ)求證:平面;
(Ⅱ)若時(shí),求二面角的正弦值;
(Ⅲ)若直線與平面所成角的正弦值為時(shí),求值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】軍訓(xùn)時(shí),甲、乙兩名同學(xué)進(jìn)行射擊比賽,共比賽10場,每場比賽各射擊四次,且用每場擊中環(huán)數(shù)之和作為該場比賽的成績.?dāng)?shù)學(xué)老師將甲、乙兩名同學(xué)的10場比賽成績繪成如圖所示的莖葉圖,并給出下列4個(gè)結(jié)論:(1)甲的平均成績比乙的平均成績高;(2)甲的成績的極差是29;(3)乙的成績的眾數(shù)是21;(4)乙的成績的中位數(shù)是18.則這4個(gè)結(jié)論中,正確結(jié)論的個(gè)數(shù)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
(1)若函數(shù)在上是減函數(shù),則;
(2)直線與線段相交,其中,,則的取值范圍是;
(3)點(diǎn)關(guān)于直線的對稱點(diǎn)為,則的坐標(biāo)為;
(4)直線與拋物線交于,兩點(diǎn),則以為直徑的圓恰好與直線相切.
其中正確的命題有__________.(把所有正確的命題的序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是( )
A.是空間中的四點(diǎn),若不能構(gòu)成空間基底,則共面
B.已知為空間的一個(gè)基底,若,則也是空間的基底
C.若直線的方向向量為,平面的法向量為,則直線
D.若直線的方向向量為,平面的法向量為,則直線與平面所成角的正弦值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位共有職工1000人,其中男性700人,女性300人,為調(diào)查該單位職工每周平均體育運(yùn)動(dòng)時(shí)間的情況,采用分層抽樣的方法,收集200位職工每周平均體育運(yùn)動(dòng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)).
(1)根據(jù)這200個(gè)樣本數(shù)據(jù),得到職工每周平均體育運(yùn)動(dòng)時(shí)間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為:,,,,,.估計(jì)該單位職工每周平均體育運(yùn)動(dòng)時(shí)間超過4小時(shí)的概率;
(2)估計(jì)該單位職工每周平均體育運(yùn)動(dòng)時(shí)間的平均數(shù)和中位數(shù)(保留兩位小數(shù));
(3)在樣本數(shù)據(jù)中,有40位女職工的每周平均體育運(yùn)動(dòng)時(shí)間超過4小時(shí),請完成每周平均體育運(yùn)動(dòng)時(shí)間與性別列聯(lián)表,并判斷是否有90%的把握認(rèn)為“該單位職工的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān)”,
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
附:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長為2的正方體中,,分別為棱、的中點(diǎn),為棱上的一點(diǎn),且,設(shè)點(diǎn)為的中點(diǎn),則點(diǎn)到平面的距離為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐P-ABC中,三條側(cè)棱PA、PB、PC兩兩垂直,且,,又M是底面ABC內(nèi)一點(diǎn),則M到三個(gè)側(cè)面的距離的平方和的最小值是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com