7.已知等差數(shù)列{an}的首項a1=1,a2為整數(shù),且a3∈[6,8]
(1)求數(shù)列{an}的通項公式;
(2)設(shè)${b_n}={a_n}+2+\frac{1}{{{2^{{a_n}+2}}}}$,Sn=b1+b2+…+bn,問是否存在最小的正整數(shù)n,使得Sn>108恒成立?若存在,求出n的值;若不存在,說明理由.

分析 (1)設(shè)等差數(shù)列{an}的公差為d,由a1=1,a2為整數(shù),可知d為整數(shù),又a3=1+2d∈[6,8]知,解得d,可得
an
(2)利用等比數(shù)列的求和公式、不等式的解法即可得出.

解答 解:(1)設(shè)等差數(shù)列{an}的公差為d,由a1=1,a2為整數(shù),可知d為整數(shù),
又a3=1+2d∈[6,8]知,d=3.…(2分)
所以an=3n-2.…(4分)
(2)由(1)知,${b_n}={a_n}+2+\frac{1}{{{2^{{a_n}+2}}}}=3n+{({\frac{1}{8}})^n}$,…(5分)
于是${S_n}=3(1+2+3+…+n)+\frac{{\frac{1}{8}[{1-{{(\frac{1}{8})}^n}}]}}{{1-\frac{1}{8}}}=\frac{3}{2}n(n+1)+\frac{1}{7}[{1-{{(\frac{1}{8})}^n}}]$.…(9分)
要使${S_n}=\frac{3}{2}n(n+1)+\frac{1}{7}[{1-{{(\frac{1}{8})}^n}}]>108$恒成立,
只需$\frac{3}{2}n(n+1)≥108$,…(10分)
解得n≥8或n≤-9(舍),…(11分)
所以存在最小的正整數(shù)n=8使得Sn>108恒成立.…(12分)

點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式與求和公式、不等式的解法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知全集為R,集合A={x|$\frac{x-3}{x+1}$≤0},集合B={x||2x+1|>3}.求A∩(∁RB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.40B.30C.36D.42

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.對任意實數(shù)a,b,定義運算“⊕”:$a⊕b=\left\{\begin{array}{l}b,a-b≥1\\ a,a-b<1\end{array}\right.$,設(shè)f(x)=(x2-1)⊕(4+x),若函數(shù)y=f(x)-k有三個不同零點,則實數(shù)k的取值范圍是(  )
A.(-1,2]B.[0,1]C.[-1,3)D.[-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在數(shù)列{an},{bn}中,a1=1,b1=2,an+1=bn+1,bn+1=an+1(n∈N*).
(1)求數(shù)列{bn-an},{an+bn}的通項公式;
(2)設(shè)Sn為數(shù)列的前n項的和,求數(shù)列$\left\{{\frac{1}{{4{S_n}-1+{{({-1})}^n}}}}\right\}$的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在△ABC中,a,b,c分別是A,B,C的對邊,$a=2\sqrt{3},b=2\sqrt{2}$,且1+2cos(B+C)=0,則BC邊上的高等于( 。
A.$2({\sqrt{3}+1})$B.$2({\sqrt{3}-1})$C.$\sqrt{3}+1$D.$\sqrt{3}-1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)命題p:“?x∈R,x2+2x>m”;命題q:“?x0∈R,使${x_0}^2+2m{x_0}+2-m≤0$”.如果命題p∨q為真,命題p∧q為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={-1,1,2,3},B={x|x≥2},那么A∩B等于( 。
A.{3}B.{2,3}C.{-1,2,3}D.{-1,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知圓錐的側(cè)面展開圖為一個圓心角為120°,且面積為3π的扇形,則該圓錐的體積等于$\frac{2\sqrt{2}}{3}π$.

查看答案和解析>>

同步練習(xí)冊答案