10.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,且5S1,2S2,S3成等差數(shù)列.
(1)求{an}的公比q;
(2)當(dāng)a1-a3=3時(shí),證明:數(shù)列{Sn-1}也是等比數(shù)列.

分析 (1)由5S1,2S2,S3成等差數(shù)列,可得4S2=S3+5S1,化為q2-3q+2=0,解得q.
(2)當(dāng)a1-a3=3時(shí),q≠1,可得:a1(1-22)=3,解得a1.求出Sn,證明當(dāng)n≥2時(shí),$\frac{{S}_{n}-1}{{S}_{n-1}-1}$=常數(shù)(非0)即可.

解答 (1)解:∵5S1,2S2,S3成等差數(shù)列,
∴4S2=S3+5S1,化為4a1(q+1)=${a}_{1}(1+q+{q}^{2}+5)$,
∴q2-3q+2=0,解得q=1或2.
(2)證明:當(dāng)a1-a3=3時(shí),q≠1,可得:a1(1-22)=3,解得a1=-1.
∴Sn=$\frac{-1({2}^{n}-1)}{2-1}$=1-2n,
∴當(dāng)n≥2時(shí),$\frac{{S}_{n}-1}{{S}_{n-1}-1}$=$\frac{-{2}^{n}}{-{2}^{n-1}}$=2,
∴數(shù)列{Sn-1}也是等比數(shù)列,首項(xiàng)為-2,公比為2.

點(diǎn)評 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.用min{a,b}表示a,b兩個(gè)數(shù)中的最小值,設(shè)f(x)=min{-x-2,x-4},則f(x)的最大值為(  )
A.-2B.-3C.-4D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若直線mx-2y-1=0經(jīng)過第一、三、四象限,則實(shí)數(shù)m的取值范圍是m>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)的定義域?yàn)閇-1,2],值域?yàn)閇0,2],則函數(shù)f(x-2)的定義域?yàn)閇1,4];值域?yàn)閇0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.函數(shù)f(x)=$\sqrt{\frac{1+x}{4-x}}$的定義域?yàn)榧螦,函數(shù)g(x)=3x-a(x≤1)的值域?yàn)榧螧
(1)求集合A,B;
(2)若全集U=R,集合A,B滿足(∁UA)∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,角A,B所對的邊分別為a,b,若a=3bsinA,則sinB=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)數(shù)列{an}的前n項(xiàng)的和Sn=$\frac{4}{3}$an-$\frac{1}{3}$×2n+1+$\frac{2}{3}$(n=1,2,3,…)
(Ⅰ)求首項(xiàng)a1
(Ⅱ)證明數(shù)列{an+2n}是等比數(shù)列并求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.某小型餐館一天裝要購買A,B兩種蔬菜,A,B蔬菜每千克的單價(jià)分別為2元和3元,根據(jù)需要,A蔬菜至少要買6千克,B蔬菜至少要買4千克,而且一天中購買這兩種蔬菜的總費(fèi)用不能超過60元,如果這兩種蔬菜加工后全部賣出,A,B兩種蔬菜交工后每千克分別為2元和1元,則該餐館的最大利潤最大為52元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)函數(shù)f(x)=x2-2x+alnx
(1)當(dāng)a=2時(shí),求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若函數(shù)f(x)存在兩個(gè)極值點(diǎn)x1、x2(x1<x2),①求實(shí)數(shù)a的范圍;②證明:$\frac{f{(x}_{1})}{{x}_{2}}$>-$\frac{3}{2}$-ln2.

查看答案和解析>>

同步練習(xí)冊答案