已知數(shù)列的前項和為,且,對任意,都有.
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足,求數(shù)列的前項和.
(1);(2).
解析試題分析:(1)解法1是在的條件下,由得到,將兩式相減得,經(jīng)化簡得,從而得出數(shù)列為等差數(shù)列,然后利用等差數(shù)列的通項公式求出數(shù)列的通項公式;解法2是利用代入遞推式得到,經(jīng)過化簡得到,在兩邊同時除以得到,從而得到數(shù)列為等差數(shù)列,先求出數(shù)列的通項公式,進(jìn)而求出的表達(dá)式,然后利用與之間的關(guān)系求出數(shù)列的通項公式;(2)解法1是在(1)的前提下求出數(shù)列的通項公式,然后利用錯位相減法求數(shù)列的和;解法2是利用導(dǎo)數(shù)以及函數(shù)和的導(dǎo)數(shù)運(yùn)算法則,將數(shù)列的前項和視為函數(shù)列的前項和在處的導(dǎo)數(shù)值,從而求出.
試題解析:(1)解法1:當(dāng)時,,,
兩式相減得,
即,得.當(dāng)時,,即.
數(shù)列是以為首項,公差為的等差數(shù)列..
解法2:由,得,
整理得,,兩邊同除以得,.
數(shù)列是以為首項,公差為的等差數(shù)列...
當(dāng)時,.
又適合上式,數(shù)列的通項公式為;
(2)解法1:由(1)得.
,.
,①
,②
①②得.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)求函數(shù)在處的切線的斜率;
(2)求函數(shù)的最大值;
(3)設(shè),求函數(shù)在上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)若,求曲線在處的切線方程;
(2)求的單調(diào)區(qū)間;
(3)設(shè),若對任意,均存在,使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)求函數(shù)在上的最大值與最小值;
(2)若時,函數(shù)的圖像恒在直線上方,求實(shí)數(shù)的取值范圍;
(3)證明:當(dāng)時,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知()
(1)若方程有3個不同的根,求實(shí)數(shù)的取值范圍;
(2)在(1)的條件下,是否存在實(shí)數(shù),使得在上恰有兩個極值點(diǎn),且滿足,若存在,求實(shí)數(shù)的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(,為自然對數(shù)的底數(shù)).
(1)若曲線在點(diǎn)處的切線平行于軸,求的值;
(2)求函數(shù)的極值;
(3)當(dāng)的值時,若直線與曲線沒有公共點(diǎn),求的最大值.
(注:可能會用到的導(dǎo)數(shù)公式:;)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com