已知函數(shù)f(x)在定義域(0,+∞)上是單調函數(shù),若對任意x∈(0,+∞),都有f[f(
1
x
)-x]=2,則不等式f(x)>2x的解集為
 
考點:函數(shù)單調性的判斷與證明
專題:函數(shù)的性質及應用
分析:首先,根據函數(shù)f(x)在定義域(0,+∞)上是單調函數(shù),若對任意x∈(0,+∞),都有f[f(
1
x
)-x]=2,得到f(
1
x
)-x為一個常數(shù),令這個常數(shù)為n,則f(
1
x
)-x=n,f(n)=2,
解答: 解:根據題意,得
若對任意x∈(0,+∞),都有f[f(
1
x
)-x]=2,
得到f(
1
x
)-x為一個常數(shù),
以t換
1
x
,得
f(t)-
1
t
=n,
則f(t)-
1
t
=n,f(n)=2,
∴f(t)=
1
t
+n,
∴f(n)=
1
n
+n=2,
∴n=1,
∵f(x)>2x等價于
1+
1
x
>2x,
∴-
1
2
<x<1,而定義域為(0,+∞)
∴{x|0<x<1},
故答案為:{x|0<x<1},
點評:本題考查的知識點是函數(shù)的值,函數(shù)解析式的求法,其中抽象函數(shù)解析式的求法,要注意對已知條件及未知條件的湊配思想的應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知△ABC的內角A,B,C的對邊分別為a,b,c,∠B=
π
3

(1)若a=2,b=2
3
,求c的值;
(2)若tanA=2
3
,求tanC的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求下列函數(shù)的定義域:
(1)y=
ln(5-x)
x-4

(2)y=log2(x2-3x+2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知⊙O′過定點A(0,p)(p>0),圓心O′在拋物線x2=2py上運動,MN為圓O′截x軸所得的弦,令|AM|=d1,|AN|=d2,∠MAN=θ.
(1)當O′點運動時,|MN|是否有變化?并證明你的結論;
(2)求
d1
d2
+
d2
d1
的最大值,并求取得最大值的θ值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}是等差數(shù)列,若2a7-a5=3,則a9的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對兩條不相交的空間直線a與b,必存在平面α,使得( 。
A、a?α,b?α
B、a?α,b∥α
C、a⊥α,b⊥α
D、a?α,b⊥α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某高校在2013年的自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組:第1組[160,165),第2組[165,170),第3組[170,175),第4組[175,180),第5組[180,185),得到的頻率分布直方圖如圖所示.
(1)分別求第3、4、5組的頻率;
(2)為了能選拔出最優(yōu)秀的學生,該校決定在筆試成績高的第3、4、5組中用分層抽樣的方法抽取6名學生進入第二輪面試,問每一組分別抽幾個人.
(3)在這6名學生中隨機抽取2名學生接受甲考官的面試,求第4組至少有一名學生被甲考官面試的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

小明在本期五次數(shù)學測驗中成績如下:85,84,86,88,87,那么他的數(shù)學成績的方差是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等比數(shù)列{an}的公比為q,前n項和為Sn,若S8,S7,S9成等差數(shù)列,則公比q為( 。
A、q=1
B、q=-2或q=1
C、q=-2
D、q=2或q=-1

查看答案和解析>>

同步練習冊答案