(1)求橢圓的方程;
(2)設直線l與橢圓交于A,B兩點,坐標原點O到直線l的距離為,求△AOB面積的最大值

(1)   (2)
(1)設,
依題意得        …………………..…………2分
解得                       …………………………………….3分
橢圓的方程為       ……………………………………….4分
(2)①當AB         ……………………………………5分
②當AB與軸不垂直時,設直線AB的方程為,
由已知     ………………………..6分
代入橢圓方程,整理得

         ………………….….7分



當且僅當時等號成立,此時 ………10分
③當             …………………………………..11分
綜上所述:,
此時面積取最大值 ……………..12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

若橢圓b2x2+a2y2=a2b2(a>b>0)的左焦點為F,右頂點為A,上頂點為B,且離心率為,求∠ABF.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的焦距、短軸長、長軸長成等差數(shù)列,則離心率等于___________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直線與橢圓相交于AB兩點.。
(1)若橢圓的離心率為,焦距為2,求線段AB的長;
(2)若向量與向量互相垂直(其中O為坐標原點),當橢圓的離心率e=2時,求橢圓的長軸的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設A(x1,y1),B(x2,y2)是橢圓=1(a>b>0)上的兩點,已知向量m() ,n(),若m·n=0且橢圓的離心率e=,短軸長為2,O為坐標原點:
(Ⅰ)求橢圓的方程:
(Ⅱ)若直線AB過橢圓的焦點F(0,c),(為半焦距),求直線AB的斜k率的值:
(Ⅲ)試問:△AOB的面積是否為定值?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


橢圓的離心率為軸上,,且、三點確定的圓恰好與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)過作一條與兩坐標軸都不垂直的直線交橢圓于、兩點,在軸上是否存在定點,使得恰好為△的內(nèi)角平分線,若存在,求出點的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓M(ab>0)的離心率為,長軸長為,設過右焦點F傾斜角為的直線交橢圓MA,B兩點。
(Ⅰ)求橢圓M的方程;
(Ⅱ)求證| AB | =;
(Ⅲ)設過右焦點F且與直線AB垂直的直線交橢圓MCD,求|AB| + |CD|的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓上有一點M(-4,)在拋物線(p>0)的準線l上,拋物線的焦點也是橢圓焦點.
(1)求橢圓方程;

(2)若點N在拋物線上,過N作準線l的垂線,垂足為Q距離,求|MN|+|NQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知方程=1是焦點在y軸上的橢圓,則m的取值范圍是(    )
A.m<2B.m<-1或1<m<2C.1<m<2D.m<-1或1<m<

查看答案和解析>>

同步練習冊答案