【題目】【2017唐山三模】已知函數(shù), .
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)在區(qū)間有唯一零點(diǎn),證明: .
【答案】(Ⅰ)見(jiàn)解析;(Ⅱ)見(jiàn)解析.
【解析】試題分析:(Ⅰ)求導(dǎo)得, 分, , ,三種情況討論可得單調(diào)區(qū)間.
(Ⅱ)由(1)及可知:僅當(dāng)極大值等于零,即且
所以,且,消去得,構(gòu)造函數(shù),證明單調(diào)且零點(diǎn)存在且唯一即可.
試題解析:(Ⅰ) , ,
令, ,
若,即,則,
當(dāng)時(shí), , 單調(diào)遞增,
若,即,則,僅當(dāng)時(shí),等號(hào)成立,
當(dāng)時(shí), , 單調(diào)遞增.
若,即,則有兩個(gè)零點(diǎn), ,
由, 得,
當(dāng)時(shí), , , 單調(diào)遞增;
當(dāng)時(shí), , , 單調(diào)遞減;
當(dāng)時(shí), , , 單調(diào)遞增.
綜上所述,
當(dāng)時(shí), 在上單調(diào)遞增;
當(dāng)時(shí), 在和上單調(diào)遞增,
在上單調(diào)遞減.
(Ⅱ)由(1)及可知:僅當(dāng)極大值等于零,即時(shí),符合要求.
此時(shí), 就是函數(shù)在區(qū)間的唯一零點(diǎn).
所以,從而有,
又因?yàn)?/span>,所以,
令,則,
設(shè),則,
再由(1)知: , , 單調(diào)遞減,
又因?yàn)?/span>, ,
所以,即
點(diǎn)晴:本題考查函數(shù)導(dǎo)數(shù)與單調(diào)性.確定零點(diǎn)的個(gè)數(shù)問(wèn)題:可利用數(shù)形結(jié)合的辦法判斷交點(diǎn)個(gè)數(shù),如果函數(shù)較為復(fù)雜,可結(jié)合導(dǎo)數(shù)知識(shí)確定極值點(diǎn)和單調(diào)區(qū)間從而確定其大致圖象.方程的有解問(wèn)題就是判斷是否存在零點(diǎn)的問(wèn)題,可參變分離,轉(zhuǎn)化為求函數(shù)的值域問(wèn)題處理. 恒成立問(wèn)題以及可轉(zhuǎn)化為恒成立問(wèn)題的問(wèn)題,往往可利用參變分離的方法,轉(zhuǎn)化為求函數(shù)最值處理.也可構(gòu)造新函數(shù)然后利用導(dǎo)數(shù)來(lái)求解.注意利用數(shù)形結(jié)合的數(shù)學(xué)思想方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:對(duì)于函數(shù)f(x),若在定義域內(nèi)存在實(shí)數(shù)x,滿(mǎn)足f(﹣x)=﹣f(x),則稱(chēng)f(x)為“局部奇函數(shù)”.
(1)已知二次函數(shù)f(x)=ax2+2x﹣4a(a∈R),試判斷f(x)是否為定義域R上的“局部奇函數(shù)”?若是,求出滿(mǎn)足f(﹣x)=﹣f(x)的x的值;若不是,請(qǐng)說(shuō)明理由;
(2)若f(x)=2x+m是定義在區(qū)間[﹣1,1]上的“局部奇函數(shù)”,求實(shí)數(shù)m的取值范圍.
(3)若f(x)=4x﹣m2x+1+m2﹣3為定義域R上的“局部奇函數(shù)”,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分12分)設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且S4=4S2,a2n=2an+1
(1) 求數(shù)列{an}的通項(xiàng)公式;
(2) 設(shè)數(shù)列{bn}的前n項(xiàng)和Tn,且Tn+ = λ(λ為常數(shù)),令cn=b2n,(n∈N).求數(shù)列{cn}的前n項(xiàng)和Rn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)= 是定義在區(qū)間(﹣1,1)上的奇函數(shù),且f(2)= ,
(1)確定函數(shù)f(x)的解析式;
(2)用定義法證明f(x)在區(qū)間(﹣1,1)上是增函數(shù);
(3)解不等式f(t﹣1)+f(t)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2 (a∈R),且f(1)>f(3),f(2)>f(3)( )
A.若k=1,則|a﹣1|<|a﹣2|
B.若k=1,則|a﹣1|>|a﹣2|
C.若k=2,則|a﹣1|<|a﹣2|
D.若k=2,則|a﹣1|>|a﹣2|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合A={x|ax2+bx+1=0}(a∈R,b∈R),集合B={﹣1,1}.
(1)若BA,求實(shí)數(shù)a的值;
(2)若A∩B≠,求a2﹣b2+2a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角梯形中, , ,平面平面, 為等邊三角形, 分別是的中點(diǎn), .
(1)證明: ;
(2)證明: 平面;
(3)若,求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)是奇函數(shù),函數(shù)是偶函數(shù),則
A. 函數(shù)是奇函數(shù) B. 函數(shù)是奇函數(shù)
C. 函數(shù)是奇函數(shù) D. 是奇函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】集合I={1,2,3,4,5},集合A,B為集合I的兩個(gè)非空子集,若集合A中元素的最大值小于集合B中元素的最小值,則滿(mǎn)足條件的A,B的不同情形有( )種.
A.46
B.47
C.48
D.49
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com