【題目】設(shè)數(shù)列的前項(xiàng)和,已知,.
(1)求證:數(shù)列為等差數(shù)列,并求出其通項(xiàng)公式;
(2)設(shè),又對一切恒成立,求實(shí)數(shù)的取值范圍;
(3)已知為正整數(shù)且,數(shù)列共有項(xiàng),設(shè),又,求的所有可能取值.
【答案】(1)證明見解析;;(2);(3);
【解析】
(1)當(dāng)時,由所給的遞推關(guān)系式進(jìn)行作差變形證明后項(xiàng)與前項(xiàng)之差為常數(shù)即可證得數(shù)列為等差數(shù)列,進(jìn)一步可得數(shù)列的通項(xiàng)公式;
(2)結(jié)合(1)中的通項(xiàng)公式裂項(xiàng)求和,然后結(jié)合題意可確定實(shí)數(shù)的取值范圍;
(3)首先確定數(shù)列為等差數(shù)列,然后結(jié)合數(shù)列的單調(diào)性確定絕對值符號進(jìn)行求和,得到關(guān)于k的不等式,最后求解關(guān)于k的不等式即可確定實(shí)數(shù)的所有可能取值.
(1)當(dāng)時,,,
兩式作差得,
故,
所以數(shù)列是公差為6的等差數(shù)列,
又,
所以;
(2)由于,故.
,
顯然單調(diào)遞增,且,
故, 所以.
(3),則是公差為的等差數(shù)列,
故當(dāng)時,;
當(dāng)時,,
設(shè)數(shù)列的前n項(xiàng)和為,于是:
,
注意到,則,題中的不等式即,
所以,
所以,的所有可取值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在測量一根新彈簧的勁度系數(shù)時,測得了如下的結(jié)果:
所掛重量()(x) | 1 | 2 | 3 | 5 | 7 | 9 |
彈簧長度()(y) | 11 | 12 | 12 | 13 | 14 | 16 |
(1)請?jiān)谙聢D坐標(biāo)系中畫出上表所給數(shù)據(jù)的散點(diǎn)圖;
(2)若彈簧長度與所掛物體重量之間的關(guān)系具有線性相關(guān)性,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(3)根據(jù)回歸方程,求掛重量為的物體時彈簧的長度.所求得的長度是彈簧的實(shí)際長度嗎?為什么?
注:本題中的計(jì)算結(jié)果保留小數(shù)點(diǎn)后兩位.
(參考公式:,)
(參考數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:與直線:,動直線過定點(diǎn).
(1)若直線與圓相切,求直線的方程;
(2)若直線與圓相交于、兩點(diǎn),點(diǎn)M是PQ的中點(diǎn),直線與直線相交于點(diǎn)N.探索是否為定值,若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表作,其中《方田》章給出計(jì)算弧田面積所用的經(jīng)驗(yàn)方式為:弧田面積=,弧田(如圖)由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”指半徑長與圓心到弦的距離之差,F(xiàn)有圓心角為,半徑等于4米的弧田.下列說法不正確的是( )
A. “弦”米,“矢”米
B. 按照經(jīng)驗(yàn)公式計(jì)算所得弧田面積()平方米
C. 按照弓形的面積計(jì)算實(shí)際面積為()平方米
D. 按照經(jīng)驗(yàn)公式計(jì)算所得弧田面積比實(shí)際面積少算了大約0.9平方米(參考數(shù)據(jù) )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù)滿足:①對一切恒有;②對一切恒有;③當(dāng)時,,且;④若對一切(其中),不等式恒成立.
(1)求的值;
(2)證明:函數(shù)是上的遞增函數(shù);
(3)求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐中,底面為矩形,且,,若平面,,分別是線段,的中點(diǎn).
(1)證明:;
(2)在線段上是否存在點(diǎn),使得平面?若存在,確定點(diǎn)的位置:若不存在,說明理由;
(3)若與平面所成的角為45°,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個孩子的身高與年齡(周歲)具有相關(guān)關(guān)系,根據(jù)所采集的數(shù)據(jù)得到線性回歸方程,則下列說法錯誤的是( )
A.回歸直線一定經(jīng)過樣本點(diǎn)中心
B.斜率的估計(jì)值等于6.217,說明年齡每增加一個單位,身高就約增加6.217個單位
C.年齡為10時,求得身高是,所以這名孩子的身高一定是
D.身高與年齡成正相關(guān)關(guān)系
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的右頂點(diǎn)到其一條漸近線的距離等于,拋物線的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,則拋物線上的動點(diǎn)到直線和的距離之和的最小值為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com