【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在零點(diǎn),證明:.
【答案】(1)在上是增函數(shù),在上是減函數(shù); (2).
【解析】
(1)先確定函數(shù)的定義域,然后求,進(jìn)而根據(jù)導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,判斷函數(shù) 的單調(diào)區(qū)間;
(2)采用分離參數(shù)法,得,根據(jù)在上存在零點(diǎn),可知有解,構(gòu)造,求導(dǎo),知在上存在唯一的零點(diǎn),即零點(diǎn)k滿足,進(jìn)而求得,再根據(jù)有解,得證
(1)解:函數(shù)的定義域?yàn)?/span>,
因?yàn)?/span>,所以.
所以當(dāng)時(shí),,在上是增函數(shù);
當(dāng)時(shí),,在上是減函數(shù).
所以在上是增函數(shù),在上是減函數(shù).
(2)證明:由題意可得,當(dāng)時(shí),有解,
即有解.
令,則.
設(shè)函數(shù),所以在上單調(diào)遞增.
又,所以在上存在唯一的零點(diǎn).
故在上存在唯一的零點(diǎn).設(shè)此零點(diǎn)為,則.
當(dāng)時(shí),;當(dāng)時(shí),.
所以在上的最小值為.
又由,可得,所以,
因?yàn)?/span>在上有解,所以,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱錐的所有頂點(diǎn)都在球的球面上,平面,,,若球的表面積為,則三棱錐的側(cè)面積的最大值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】大型綜藝節(jié)目《最強(qiáng)大腦》中,有一個(gè)游戲叫做盲擰魔方,就是玩家先觀察魔方狀態(tài)并進(jìn)行記憶,記住后蒙住眼睛快速還原魔方,盲擰在外人看來(lái)很神奇,其實(shí)原理是十分簡(jiǎn)單的,要學(xué)會(huì)盲擰也是很容易的.根據(jù)調(diào)查顯示,是否喜歡盲擰魔方與性別有關(guān).為了驗(yàn)證這個(gè)結(jié)論,某興趣小組隨機(jī)抽取了50名魔方愛(ài)好者進(jìn)行調(diào)查,得到的情況如下表所示:
喜歡盲擰 | 不喜歡盲擰 | 總計(jì) | |
男 | 22 | 30 | |
女 | 12 | ||
總計(jì) | 50 |
表1
并邀請(qǐng)這30名男生參加盲擰三階魔方比賽,其完成情況如下表所示:
成功完成時(shí)間(分鐘) | [0,10) | [10,20) | [20,30) | [30,40] |
人數(shù) | 10 | 10 | 5 | 5 |
表2
(1)將表1補(bǔ)充完整,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為是否喜歡盲擰與性別有關(guān)?
(2)根據(jù)表2中的數(shù)據(jù),求這30名男生成功完成盲擰的平均時(shí)間(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替);
(3)現(xiàn)從表2中成功完成時(shí)間在[0,10)內(nèi)的10名男生中任意抽取3人對(duì)他們的盲擰情況進(jìn)行視頻記錄,記成功完成時(shí)間在[0,10)內(nèi)的甲、乙、丙3人中被抽到的人數(shù)為,求的分布列及數(shù)學(xué)期望.
附參考公式及數(shù)據(jù):,其中.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓.
(1)過(guò)原點(diǎn)的直線被圓所截得的弦長(zhǎng)為2,求直線的方程;
(2)過(guò)外的一點(diǎn)向圓引切線,為切點(diǎn),為坐標(biāo)原點(diǎn),若,求使最短時(shí)的點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為提高玉米產(chǎn)量,某種植基地對(duì)單位面積播種數(shù)與每棵作物的產(chǎn)量之間的關(guān)系進(jìn)行了研究,收集了塊試驗(yàn)田的數(shù)據(jù),得到下表:
試驗(yàn)田編號(hào) | |||||||||||
(棵/) | |||||||||||
(斤/棵) |
技術(shù)人員選擇模型作為與的回歸方程類型,令,相關(guān)統(tǒng)計(jì)量的值如下表:
由表中數(shù)據(jù)得到回歸方程后進(jìn)行殘差分析,殘差圖如圖所示:
(1)根據(jù)殘差圖發(fā)現(xiàn)一個(gè)可疑數(shù)據(jù),請(qǐng)寫出可疑數(shù)據(jù)的編號(hào)(給出判斷即可,不必說(shuō)明理由);
(2)剔除可疑數(shù)據(jù)后,由最小二乘法得到關(guān)于的線性回歸方程中的,求關(guān)于的回歸方程;
(3)利用(2)得出的結(jié)果,計(jì)算當(dāng)單位面積播種數(shù)為何值時(shí),單位面積的總產(chǎn)量的預(yù)報(bào)值最大?(計(jì)算結(jié)果精確到)
附:對(duì)于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘法估計(jì)分別為,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(13分)設(shè){an}是公比為正數(shù)的等比數(shù)列a1=2,a3=a2+4.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè){bn}是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列{an+bn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐中,底面,,,,,,為的中點(diǎn).
(1)求證:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一袋中裝有形狀、大小都相同的6只小球,其中有3只紅球、2只黃球和1只藍(lán)球.若從中1次隨機(jī)摸出2只球,則1只紅球和1只黃球的概率為__________,2只球顏色相同的概率為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com