在直角坐標系xOy中,已知動點P與平面上兩定點M(-1,0),N(1,0)連線的斜率的積為定值-4,設點P的軌跡為C.
(1)求出曲線C的方程;
(2)設直線y=kx+1與C交于A,B兩點,若
OA
OB
,求k的值.
考點:直線與圓錐曲線的綜合問題
專題:圓錐曲線的定義、性質與方程
分析:(1)根據(jù)定點M(-1,0)、N(1,0),直線MP與直線PN的斜率之積為-4,建立方程,化簡可得曲線C的方程;
(2)設A(x1,y1),B(x2,y2),聯(lián)立直線與橢圓方程,利用韋達定理以及
OA
OB
,推出x1x2+y1y2=0,然后求出直線的斜率的值即可.
解答: 解:(1)設P點坐標為(x,y)
∵定點M(-1,0)、N(1,0),直線PM與直線PN的斜率之積為-4,
y
x+1
y
x-1
=-4
,
∴曲線C的方程為x2+
y2
4
=1(x≠±1)

(2)設A(x1,y1),B(x2,y2),其坐標滿足 
x2+
y2
4
=1
y=kx+1.

消去y并整理得(k2+4)x2+2kx-3=0,
x1+x2=-
2k
k2+4
,x1x2=-
3
k2+4

OA
OB
,即x1x2+y1y2=0.
y1y2=k2x1x2+k(x1+x2)+1,
于是x1x2+y1y2=-
3
k2+4
-
3k2
k2+4
-
2k2
k2+4
+1=0
,
化簡得-4k2+1=0,所以k=±
1
2
點評:本題考查軌跡方程的求解,考查存在性問題的探究,考查直線與橢圓的位置關系,考查轉化思想以及計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知平面向量
a
,
b
滿足|
a
|=|
b
|=2,(
a
+2
b
)•(
a
-
b
)=-2,則
a
b
的夾角為(  )
A、
π
6
B、
π
3
C、
3
D、
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

斜率為2的直線l與雙曲線
x2
3
-
y2
2
=1
交于A,B兩點,且|AB|=4,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(cos(θ-
π
4
), 1)
b
=(3,0),其中θ∈(
π
2
 
4
)
,若
a
b
=1.
(Ⅰ)求sinθ的值;
(Ⅱ)求tan2θ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知離心率為
3
2
的橢圓C,其長軸的端點A1,A2恰好是雙曲線
x2
3
-y2=1的左右焦點,點P是橢圓C上不同于A1,A2的任意一點,設直線PA1,PA2的斜率分別為k1,k2
(1)求橢圓C的標準方程;
(2)試判斷乘積“k1•k2”的值是否與點P的位置有關,并證明你的結論;
(3)當k1=
1
2
,在橢圓C上求點Q,使該點到直線PA2的距離最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設z=2y-2x+4,式中x,y滿足條件
0≤x≤1
0≤y≤2
2y-x≥1
,求z的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,F(xiàn)1,F(xiàn)2是雙曲線x2-y2=1的兩個焦點,O為坐標原點,圓O是以F1F2為直徑的圓,直線l:y=kx+b與圓O相切,并與雙曲線交于A、B兩點.
(Ⅰ)根據(jù)條件求出b和k的關系式;
(Ⅱ)當
OA
OB
=k2+1
時,求直線l的方程;
(Ⅲ)當
OA
OB
=m(k2+1)
,且滿足2≤m≤4時,求△AOB面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=
x+
-x2+4x-3
2x
的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

①?φ∈R,函數(shù)f(x)=sin(2x+φ)都不是偶函數(shù);
②函數(shù)f(x)=ex+x2-2的零點有2個; 
③已知函數(shù)y=f(x)和函數(shù)y=log2(x+1)的圖象關于直線x-y=0 對稱,則函數(shù)y=f(x)的解析式為y=2x-1;
④?m∈R,使f(x)=(m-1)•xm2-4m+3是冪函數(shù),且在(0,+∞)上遞減;
上述命題中是真命題的有
 

查看答案和解析>>

同步練習冊答案