【題目】已知函數(shù)f(x)=|x+2|+|x﹣1|.
(1)求不等式f(x)>5的解集;
(2)若對于任意的實數(shù)x恒有f(x)≥|a﹣1|成立,求實數(shù)a的取值范圍.
【答案】
(1)解:不等式f(x)>5即為|x+2|+|x﹣1|>5,
等價于 或 或 ,
解得x<﹣3或x>2,
因此,原不等式的解集為{x|x<﹣3或x>2}
(2)解:f(x)=|x+2|+|x﹣1|≥|(x+2)﹣(x﹣1)|=3,
要使f(x)≥|a﹣1|對任意實數(shù)x∈R成立,
須使|a﹣1|≤3,
解得:﹣2≤a≤4
【解析】(1)問題轉(zhuǎn)化為解不等式組問題,求出不等式的解集即可;(2)要使f(x)≥|a﹣1|對任意實數(shù)x∈R成立,得到|a﹣1|≤3,解出即可.
【考點精析】利用絕對值不等式的解法對題目進行判斷即可得到答案,需要熟知含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=2x﹣ex+1.
(1)求f(x)的最大值;
(2)已知x∈(0,1),af(x)<tanx,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:函數(shù)f(x)= 的圖象的對稱中心坐標為(1,1);命題q:若函數(shù)g(x)在區(qū)間[a,b]上是增函數(shù),則有g(shù)(a)(b﹣a)< g(x)dx<g(b)(b﹣a)成立.下列命題為真命題的是( )
A.p∧q
B.¬p∧q
C.p∧¬q
D.¬p∧¬q
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,直線l過定點(﹣1,0),且傾斜角為α(0<α<π),以坐標原點O為極點,以x軸正半軸為極軸,建立極坐標系,已知曲線C的極坐標方程為ρ=cosθ(ρcosθ+8).
(1)寫出l的參數(shù)方程和C的直角坐標方程;
(2)若直線l與曲線C交于A,B兩點,且 ,求α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)甲,乙兩種芯片,其質(zhì)量按測試指標劃分為:指標大于或等于82為合格品,小于82為次品.現(xiàn)隨機抽取這兩種芯片各100件進行檢測,檢測結(jié)果統(tǒng)計如表:
測試指標 | [70,76) | [76,82) | [82,88) | [88,94) | [94,100] |
芯片甲 | 8 | 12 | 40 | 32 | 8 |
芯片乙 | 7 | 18 | 40 | 29 | 6 |
(Ⅰ)試分別估計芯片甲,芯片乙為合格品的概率;
(Ⅱ)生產(chǎn)一件芯片甲,若是合格品可盈利40元,若是次品則虧損5元;生產(chǎn)一件芯片乙,若是合格品可盈利50元,若是次品則虧損10元.在(I)的前提下,
(i)記X為生產(chǎn)1件芯片甲和1件芯片乙所得的總利潤,求隨機變量X的分布列和數(shù)學(xué)期望;
(ii)求生產(chǎn)5件芯片乙所獲得的利潤不少于140元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,幾何體EF﹣ABCD中,CDEF為邊長為2的正方形,ABCD為直角梯形,AB∥CD,AD⊥DC,AD=2,AB=4,∠ADF=90°.
(1)求證:AC⊥FB
(2)求二面角E﹣FB﹣C的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】連續(xù)投擲兩次骰子得到的點數(shù)分別為m,n,向量 與向量 的夾角記為α,則α 的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|+|2x﹣a|(a∈R).
(1)若f(1)<11,求a的取值范圍;
(2)若a∈R,f(x)≥x2﹣x﹣3恒成立,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+2|﹣2|x+1|.
(1)求f(x)的最大值;
(2)若存在x∈[﹣2,1]使不等式a+1>f(x)成立,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com