設(shè)min{a,b}=
a,a≤b
b,a>b
,若函數(shù)f(x)=min{3-x,log2x},則f(x)<
1
2
的解集為(  )
A、(
2
,+∞)
B、(0,
2
)∪(
5
2
,+∞)
C、(0,2)∪(
5
2
,+∞)
D、(0,+∞)
考點(diǎn):指、對(duì)數(shù)不等式的解法
專題:不等式的解法及應(yīng)用
分析:由題意原不等式等價(jià)于
3-x≤log2x
3-x<
1
2
3-x>log2x
log2x<
1
2
,解不等式組可得答案.
解答: 解:∵min{a,b}=
a,a≤b
b,a>b
,
∴f(x)=min{3-x,log2x}=
3-x,3-x≤log2x
log2x,3-x>log2x
,
∴f(x)<
1
2
等價(jià)于
3-x≤log2x
3-x<
1
2
3-x>log2x
log2x<
1
2
,
3-x≤log2x
3-x<
1
2
可得x>
5
2
,解
3-x>log2x
log2x<
1
2
可得0<x<
2

故f(x)<
1
2
的解集為:(0,
2
)∪(
5
2
,+∞)
故選:B
點(diǎn)評(píng):本題考查新定義和對(duì)數(shù)不等式,化為不等式組是解決問(wèn)題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在平面直角坐標(biāo)系xOy中,圓M的方程為(x-4)2+y2=1.以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,且與直角坐標(biāo)系取相同的單位長(zhǎng)度,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsin(θ+
π
6
)=
1
2

(Ⅰ)求直線l的直角坐標(biāo)方程和圓M的參數(shù)方程;
(Ⅱ)求圓M上的點(diǎn)到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

軸截面為正三角形的圓錐內(nèi)有一個(gè)內(nèi)切球,若圓錐的底面半徑為2,求球的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)任意的n∈N*,都有an>0,并且有Sn=
a13+a23+a33+…+an3

(1)求a2,a3的值;
(2)求數(shù)列{an}的通項(xiàng)公式an;
(3)設(shè)數(shù)列{bn},其中 bn=
1
an2
,設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn,求證:Tn
7
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)=
a
x
+x+(a-1)lnx+15a,F(xiàn)(x)=2x3-3(2a+3)x2+12(a+1)x+12a+2.
(1)當(dāng)a=-2時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)函數(shù)g(x)
F(x),x≤1
f(x),x>1
(e是自然對(duì)數(shù)的底數(shù)),是否存在a使g(x)在[a,-a]上為減函數(shù),若存在,求實(shí)數(shù)a的范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an},a1=1,an=
1
2
an-1-
1
2n
(n≥2,n∈N*
(1)求證:數(shù)列{2nan}是等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式an及其前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若平面
a
,
b
滿足|
a
+
b
|=1,
a
+
b
平行于y軸,
b
=(2,-1),則
a
=( 。
A、(-1,1)
B、(-2,2)
C、(-1,1)或(-3,1)
D、(-2,2)或(-2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U=R,A={x|-1≤x<2},B={x|1<x≤3},求:A∩B,A∪B,∁UA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=x2+ax+a-3.
(1)求證:函數(shù)f(x)的圖象與x軸有兩個(gè)不同的交點(diǎn);
(2)若函數(shù)f(x)的一個(gè)零點(diǎn)大于1,另一個(gè)零點(diǎn)小于1,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案