【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸建立極坐標(biāo)系,點(diǎn)的極坐標(biāo),曲線的極坐標(biāo)方程為

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)若為曲線上的動(dòng)點(diǎn),求中點(diǎn)到直線的距離最小值.

【答案】(1),;(2)

【解析】

(1)利用加減消元法消參可以求出直線的普通方程.利用極坐標(biāo)與直角坐標(biāo)之間的轉(zhuǎn)化公式可以求出曲線的直角坐標(biāo)方程;

(2)求出的直角坐標(biāo),利用曲線的參數(shù)方程設(shè)出點(diǎn)的坐標(biāo),利用中點(diǎn)坐標(biāo)公式,求出的坐標(biāo),利用點(diǎn)到直線距離公式求出到直線的距離,利用輔助角公式,根據(jù)正弦型函數(shù)的單調(diào)性可以求出中點(diǎn)到直線的距離最小值.

(1)直線的普通方程,

,

,

,

曲線的直角坐標(biāo)方程為

(2)易知的直角坐標(biāo),設(shè),

的中點(diǎn),

設(shè)到直線的距離為,

,

當(dāng)時(shí),.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某創(chuàng)業(yè)者計(jì)劃在某旅游景區(qū)附近租賃一套農(nóng)房發(fā)展成特色農(nóng)家樂(lè),為了確定未來(lái)發(fā)展方向此創(chuàng)業(yè)者對(duì)該景區(qū)附近五家農(nóng)家樂(lè)跟蹤調(diào)查了100天,這五家農(nóng)家樂(lè)的收費(fèi)標(biāo)準(zhǔn)互不相同得到的統(tǒng)計(jì)數(shù)據(jù)如下表,x為收費(fèi)標(biāo)準(zhǔn)(單位:/),t為入住天數(shù)(單位:),以頻率作為各自的入住率,收費(fèi)標(biāo)準(zhǔn)x入住率”y的散點(diǎn)圖如圖

x

100

150

200

300

450

t

90

65

45

30

20

(1)若從以上五家農(nóng)家樂(lè)中隨機(jī)抽取兩家深人調(diào)查,記入住率超過(guò)0.6的農(nóng)家樂(lè)的個(gè)數(shù),求的概率分布列

(2)zlnx,由散點(diǎn)圖判斷哪個(gè)更合適于此模型(給出判斷即可不必說(shuō)明理由)?并根據(jù)你的判斷結(jié)果求回歸方程(a,的結(jié)果精確到0.1)

(3)根據(jù)第(2)問(wèn)所求的回歸方程,試估計(jì)收費(fèi)標(biāo)準(zhǔn)為多少時(shí),100天銷售額L最大?(100天銷售額L100×入住率×收費(fèi)標(biāo)準(zhǔn)x)

參考數(shù)據(jù), ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知, ,,則對(duì)此不等式描敘正

確的是( )

A. ,至少存在一個(gè)以為邊長(zhǎng)的等邊三角形

B. 則對(duì)任意滿足不等式的都存在為邊長(zhǎng)的三角形

C. ,則對(duì)任意滿足不等式的都存在為邊長(zhǎng)的三角形

D. ,則對(duì)滿足不等式的不存在為邊長(zhǎng)的直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某研究機(jī)構(gòu)為了解某學(xué)校學(xué)生使用手機(jī)的情況,在該校隨機(jī)抽取了60名學(xué)生(其中男、女生人數(shù)之比為21)進(jìn)行問(wèn)卷調(diào)查.進(jìn)行統(tǒng)計(jì)后將這60名學(xué)生按男、女分為兩組,再將每組學(xué)生每天使用手機(jī)的時(shí)間(單位:分鐘)分為5組,得到如圖所示的頻率分布直方圖(所抽取的學(xué)生每天使用手機(jī)的時(shí)間均不超過(guò)50分鐘).

1)求出女生組頻率分布直方圖中的值;

2)求抽取的60名學(xué)生中每天使用手機(jī)時(shí)間不少于30分鐘的學(xué)生人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)="xln" x–ax2+(2a–1)x,aR.

)令g(x)=f'(x),求g(x)的單調(diào)區(qū)間;

)已知f(x)x=1處取得極大值.求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),設(shè)的兩個(gè)極值點(diǎn)為,,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖為一正方體的平面展開(kāi)圖,在這個(gè)正方體中,有以下結(jié)論:①,②CFEN所成的角為,//MN ,④二面角的大小為,其中正確的個(gè)數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在幾何體中,為正三角形,平面,若是棱的中點(diǎn),且,則異面直線所成角的余弦值為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】新高考改革后,國(guó)家只統(tǒng)一考試數(shù)學(xué)和語(yǔ)文,英語(yǔ)學(xué)科改為參加等級(jí)考試,每年考兩次,分別放在每個(gè)學(xué)年的上、下學(xué)期,物理、化學(xué)、生物、地理、歷史、政治這六科則以該省的省會(huì)考成績(jī)?yōu)闇?zhǔn).考生從中選擇三科成績(jī),參加大學(xué)相關(guān)院系的錄取.

1)若英語(yǔ)等級(jí)考試成績(jī)有一次為優(yōu),即可達(dá)到某211院校的錄取要求.假設(shè)某個(gè)學(xué)生參加每次等級(jí)考試事件是獨(dú)立的,且該生英語(yǔ)等級(jí)考試成績(jī)?yōu)閮?yōu)的概率都是,求該生在高二上學(xué)期的英語(yǔ)等級(jí)考試成績(jī)才為優(yōu)的概率;

2)據(jù)預(yù)測(cè),要想報(bào)考該211院校的相關(guān)院系,省會(huì)考的成績(jī)至少在90分以上,才有可能被該校錄取.假設(shè)該生在省會(huì)考六科的成績(jī),考到90分以上概率都是,設(shè)該生在省會(huì)考時(shí)考到90分以上的科目數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案