分析 (1)先利用導數(shù)的幾何意義求出k的值,然后利用導數(shù)求該函數(shù)單調區(qū)間及其極值;
(2)由題意可知,原不等式可化為函數(shù)$\frac{1}{e+1}$•$\frac{(x+1)(lnx+1)}{x}$>$\frac{2{e}^{x-1}}{x{e}^{x}+1}$,分別構造函數(shù)g(x)=$\frac{(x+1)(lnx+1)}{x}$,h(x)=$\frac{2{e}^{x-1}}{x{e}^{x}+1}$,分別求導,根據(jù)導數(shù)和函數(shù)最值的關系即可證明
解答 解:(1)∵f′(x)=$\frac{1-a-lnx}{{x}^{2}}$,
f(x)在點(e,f(e))處的切線斜率為-$\frac{a}{{e}^{2}}$,由切線與直線e2x-y+e=0垂直,
可得f′(e)=-$\frac{1}{{e}^{2}}$,即有-$\frac{a}{{e}^{2}}$=-$\frac{1}{{e}^{2}}$,解得a=1,
∴f(x)=$\frac{1+lnx}{x}$,f′(x)=-$\frac{lnx}{{x}^{2}}$(x>0)
當0<x<1,f′(x)>0,f(x)為增函數(shù);
當x>1時,f′(x)<0,f(x)為減函數(shù).
∴x=1是函數(shù)f(x)的極大值點,極大值為f(1)=1,無極小值,
(2)不等式$\frac{f(x)}{e+1}$>$\frac{2{e}^{x-1}}{(x+1)(x{e}^{x}+1)}$.
即為$\frac{1}{e+1}$•$\frac{(x+1)(lnx+1)}{x}$>$\frac{2{e}^{x-1}}{x{e}^{x}+1}$
令g(x)=$\frac{(x+1)(lnx+1)}{x}$
則g′(x)=$\frac{x-lnx}{{x}^{2}}$,
再令φ(x)=x-lnx,則φ′(x)=1-$\frac{1}{x}$=$\frac{x-1}{x}$,
∵x>1∴φ′(x)>0,φ(x)在(1,+∞)上是增函數(shù),
∴φ(x)>φ(1)=1>0,g′(x)>0,
∴g(x)在(1,+∞)上是增函數(shù),
∴x>1時,g(x)>g(1)=2,
故$\frac{g(x)}{e+1}$>$\frac{2}{e+1}$
故令h(x)=$\frac{2{e}^{x-1}}{x{e}^{x}+1}$,
則h′(x)=$\frac{2{e}^{x-1}(1-{e}^{x})}{(x{e}^{x}+1)^{2}}$,
∵x>1∴1-ex<0,h′(x)<0,即h(x)在(1,+∞)上是減函數(shù)
∴x>1時,h(x)<h(1)=$\frac{2}{e+1}$,
∴$\frac{g(x)}{e+1}$>h(x),
∴當x>1時,$\frac{f(x)}{e+1}$>$\frac{2{e}^{x-1}}{(x+1)(x{e}^{x}+1)}$.
點評 本題考查導數(shù)的運用:求切線的斜率、單調區(qū)間和極值,同時考查構造函數(shù)求導數(shù),判斷單調性,運用單調性證明不等式,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | b>a>c | B. | c>b>a | C. | c>a>b | D. | a>c>b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com