分析 由$[\begin{array}{l}{a}&{k}\\{0}&{1}\end{array}]$$[\begin{array}{l}k\\-1\end{array}]$=λ$[\begin{array}{l}k\\-1\end{array}]$,即$\left\{\begin{array}{l}{ak-k=kλ}\\{-1=-λ}\end{array}\right.$,由k≠0,解得:$\left\{\begin{array}{l}{λ=1}\\{a=2}\end{array}\right.$,根據(jù)矩陣的運算性質(zhì)可知:A$[\begin{array}{l}{1}\\{1}\end{array}]$=$[\begin{array}{l}{3}\\{1}\end{array}]$,$[\begin{array}{l}{2}&{k}\\{0}&{1}\end{array}]$$[\begin{array}{l}{1}\\{1}\end{array}]$=$[\begin{array}{l}{3}\\{1}\end{array}]$,即可求得k的值,求得a+k的值.
解答 解:設(shè)特征向量為$\overrightarrow{a}$=$[\begin{array}{l}k\\-1\end{array}]$,對應(yīng)的特征值為λ,λ,
則$[\begin{array}{l}{a}&{k}\\{0}&{1}\end{array}]$$[\begin{array}{l}k\\-1\end{array}]$=λ$[\begin{array}{l}k\\-1\end{array}]$,即$\left\{\begin{array}{l}{ak-k=kλ}\\{-1=-λ}\end{array}\right.$,
由k≠0,解得:$\left\{\begin{array}{l}{λ=1}\\{a=2}\end{array}\right.$,
由A-1$[\begin{array}{l}{3}\\{1}\end{array}]$=$[\begin{array}{l}{1}\\{1}\end{array}]$,即A$[\begin{array}{l}{1}\\{1}\end{array}]$=$[\begin{array}{l}{3}\\{1}\end{array}]$,
$[\begin{array}{l}{2}&{k}\\{0}&{1}\end{array}]$$[\begin{array}{l}{1}\\{1}\end{array}]$=$[\begin{array}{l}{3}\\{1}\end{array}]$,即$\left\{\begin{array}{l}{2+k=3}\\{1=1}\end{array}\right.$,解得:k=1,
∴a+k=2+1=3,
故答案為:3.
點評 本題考查矩陣的運算,考查矩陣的特征值與特征向量的計算,考查計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com