14.關(guān)于x的方程2sinx-cos2x=m的解集是空集,則實數(shù)m的取值范圍是(-∞,-2)∪(2,+∞).

分析 根據(jù)已知方程表示出m,利用同角三角函數(shù)間的基本關(guān)系變形,利用正弦函數(shù)的值域求出方程有解時m的取值范圍,求補集即可得解.

解答 解:已知方程變形得:sin2x+2sinx-1=m,
即m+2=(sinx+1)2,
∵-1≤sinx≤1,可得:sinx+1∈[0,2],
∴若關(guān)于x的方程有解,則m+2=(sinx+1)2∈[0,4],解得:m∈[-2,2],
∵關(guān)于x的方程解集是空集,
∴m的取值范圍是(-∞,-2)∪(2,+∞).
故答案為:(-∞,-2)∪(2,+∞).

點評 此題考查了同角三角函數(shù)間基本關(guān)系,熟練掌握基本關(guān)系是解本題的關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.壇子里放著5個相同大小,相同形狀的咸鴨蛋,其中有3個是綠皮的,2個是白皮的.如果不放回地依次拿出2個鴨蛋,求:
(1)第一次拿出綠皮鴨蛋的概率;
(2)第1次和第2次都拿到綠皮鴨蛋的概率;
(3)在第1次拿出綠皮鴨蛋的條件下,第2次拿出綠皮鴨蛋的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0).
(1)如果橢圓M的離心率e=$\frac{\sqrt{3}}{2}$,經(jīng)過點P(2,1).
①求橢圓M的方程;
②經(jīng)過點P的兩直線與橢圓M分別相交于A,B,它們的斜率分別為k1,k2.如果k1+k2=0,試問:直線AB的斜率是否為定值?并證明.
(2)如果橢圓M的a=2,b=1,點B,C分別為橢圓M的上、下頂點,過點T(t,2)(t≠0)的直線TB,TC分別與橢圓M交于E,F(xiàn)兩點.若△TBC的面積是△TEF的面積的k倍,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.函數(shù)f(x)=$\frac{a+lnx}{x}$,若曲線f(x)在點(e,f(e))處的切線與直線e2x-y+e=0垂直(其中e為自然對數(shù)的底數(shù)).
(1)求f(x)的單調(diào)區(qū)間和極值.
(2)求證:當(dāng)x>1時,$\frac{f(x)}{e+1}$>$\frac{2{e}^{x-1}}{(x+1)(x{e}^{x}+1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的中心在原點,右頂點為A(2,0),其離心率與雙曲線$\frac{y^2}{3}-{x^2}=1$的離心率互為倒數(shù)
(1)求橢圓的方程;
(2)已知M,N是橢圓C上的點,O為原點,直線OM與ON的斜率之積為$-\frac{1}{4}$,若動點P(x0,y0)滿足$\overrightarrow{OP}=\overrightarrow{OM}+3\overrightarrow{ON}$,求證:${x_0}^2+4{y_0}^2$為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在正三棱柱ABC-A1B1C1中,AB=2,點D、E分別是棱AB、BB1的中點,若DE⊥EC1,則側(cè)棱AA1的長為( 。
A.1B.2C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在三棱錐P-ABC中,PA⊥底面ABC,BC⊥AC,∠ABC=30°,AC=1,PB=2$\sqrt{3}$,則PC與平面PAB所成余弦值是( 。
A.$\frac{\sqrt{33}}{6}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{6}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=ax,g(x)=logax(a>0,a≠1),若$f({\frac{1}{2}})•g({\frac{1}{2}})<0$,那么f(x)與g(x)在同一坐標系內(nèi)的圖象可能是下圖中的( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.正三棱柱ABC-A′B′C′的A′A=AB=2,則點A到BC′的距離為$\frac{{\sqrt{14}}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案